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This is meant to be a quick survey of important concepts in introduc-
tory probability theory. It goes faster and more in-depth than elemen-
tary probability class, but not as technical as those pure math courses,
which might be good for people just getting into research like me.
Reference textbook:
Introduction to Probability by David F. Anderson, Timo Seppäläinen, and
Benedek Valkó (2017)
Mathematical Statistics with Applications by Dennis Wackerly, William
Mendenhall, and Richard L. Scheaffer (2007)
MATH447 Stochastic Process notes by Jana Kurrek

1 Experiments with random outcomes

1.1 Ingredients of a Probability Model

Kolmogorov Axioms (early 1930s)

1. 0 ≤ P(A) ≤ 1 for event A.

2. P(Ω) = 1 and P(∅) = 0.

3. If A1, A2...... is a sequence of pair-
wise disjoint events
(Ei ∩ Ej = ∅) for i ̸= j,
then
P(E1 ∪ E2 ∪ E3......) = ∑∞

i=1 P(Ei)
or

P(
∞⋃

i=1

) =
∞

∑
i=1

P(Ai)

*Axiom 3 can also be stated in terms of
finite union of events as
P(E1 ∪ E2 ∪ E3......) = ∑n

i=1 P(Ei)
*Axiom 3 states that we can calculate
probability of an event by summing up
probabilities of its disjoint decomposed
events.

Definition 1. These are ingredients of a probability model.

• The sample space Ω is the set of all possible outcomes of the experi-
ment. Elements of Ω are called sample points and typically denoted
by ω.

• Subsets of Ω are called events. The collection of events in Ω is de-
noted by F .

• The probability measure (also called probability distribution or
simply probability) P is a function from F into the real numbers.
Each event A has a probability of P(A), and P satisfies the axioms on
the right.

The triple (Ω,F , P) is called a probablity space. Every mathematically
precise model of a random experiment or collection of experiments must
be of this kind.

1.2 Random Sampling

Theorem 1 (Random Sampling). Let S be a finite sample space with N
equally likely events and let E be an event in S. Then

P(E) = n
N

This important theorem can reduce the
problem of finding probabilities to a
counting problem.

Counting Rule 1: Multiplication Rule

Sampling with replacement, order matters. Consider k sets, Set 1

and Set 2 ... Set k. Set 1 has n1, Set 2 has n2 ... Set k has nk distinct
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objects. Then the number of ways to form a set by choosing one
object from each set is n1n2...nk.

Counting Rule 2: Factorial Rule

Sampling without replacement, order matters. The number of ways
to arrange n distinct objects is n!.
0! = 1and 1! = 1

Counting Rule 3: Permutation Rule

Sampling without replacement, order matters. The number of ways
to arrange r chosen from n distinct object at a time without replace-
ment, where the order matters, is known as permutations of n objects
taken r at a time.
It is given by: nPr =

n!
(n − r)!

Counting Rule 4: Combination Rule

Sampling without replacement, order irrelevant. The number of
ways to select r object from n distinct total objects at a time without
replacement, where order does not matter, is known as combination

of n objects taken r at a time. It is given by: (n
r) =

n!
(n − r)!r!

(n
r) is also called binomial coefficient.

1.3 Consequences of the rules of probability

Decomposing an event

If A1, A2, ..... are pairwise disjoint events and A is their union, then
P(A) = P(A1) + P(A2) + ..... Calculation of the probability of a
complicated event A almost always involves decomposing A into
smaller disjoint pieces whose probabilities are easier to find. Both
finite and infinite decomposition is possible.

Theorem 2 (Events and complements).
For any event A ,P(A)c = 1 − P(A)

Theorem 3. P(∅) = 0

Theorem 4. P(A ∪ BC) = P(A)− P(A ∩ Bc)

Proof:
Express A as the union of disjoint
events as A = (A ∩ BC) ∪ (A ∩ B)
P(A) = P(A ∩ BC) + P(A ∩ B)
by Axiom 3,
⇒ P(A ∪ BC) = P(A)− P(A ∩ Bc)

Theorem 5 (Monotonicity of probability). If A ⊂ B then P(A) ≤
P(B)

Proof:
B = A ∪ (AC ∩ B), P(B) = P(A) + P(AC ∩ B) – Axiom 3

As P(AC ∩ B) ≥ 0 – Axiom 1, ⇒ P(B) ≥ P(A)orP(A) ≤ P(B)
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Theorem 6 (Inclusion-exclusion formulas).

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

P(A ∪ B ∪ C) = P(A) + P(B) + P(C)− P(A ∩ B)− P(A ∩ C)

−P(B ∩ C) + P(A ∩ B ∩ C)

General Formula:

P(A1 ∪ ... ∪ An) =
n

∑
i=1

P(Ai)− ∑
1≤i1<i2≤n

P(Ai1 ∩ Ai2)

+ ∑
1≤i1<i2<i3≤n

P(Ai1 ∩ Ai2 ∩ Ai3)

− ∑
1≤i1<i2<i3≤i4≤n

P(Ai1 ∩ Ai2 ∩ Ai3 ∩ Ai4)

+... + (−1)n+1P(Ai1 ∩ ... ∩ Ain)

=
n

∑
k=1

(−1)k+1 ∑
1≤i1<...<ik≤n

P(Ai1 ∩ ... ∩ Aik )

Proof:
A ∪ B = (A ∩ BC) ∪ (A ∩ B) ∪ (AC ∩ B)
P(A ∪ B) = P(A ∩ BC) + P(A ∩ B) + P(AC ∩ B)
P(A ∪ B) = (P(A)− P(A ∩ B)) + P(A ∩ B) + (P(B)− P(A ∩ B))
By Theorem 3, therefore P(A ∪ B) = P(A) + P(B)− P(A ∩ B)
Proof :
Write E as the union of its simple events (elementary outcomes).
E = ∪n

i=1Ei

As the simple events are disjoint,
P(E) = ∑i=1

n P(Ei) by Axiom 3.
Similarly, S = ∪N

i=1Ei and P(S) = ∑i=1
N P(Ei) by Axiom 3.

Since all event Ei are equally likely (have the same probability of
occurrence)
∑N

i=1 P(Ei) = NP(Ei) also P(S) = 1 by Axiom 2

Hence, NP(Ei) = 1 and P(Ei) =
1
N

Therefore, P(E) = ∑n
i=1 P(Ei) = ∑n

i=1
1
N = n

N Side notes ssss

1.4 Continuity of the probability measure

Theorem 7. Suppose we have an infinite sequence of events A1, A2, . . .
that are nested increasing: A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ · · · . Let
A∞ = ∪∞

k=1 Ak denote the union. Then

lim
n→∞

P(An) = P(A∞).

Another way to state this is as follows: if we have increasing
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events then the probability of the union of all the events(the prob-
ability that at least one of them happens) is equal to the limit of the
individual probabilities. Recall from calculus that a function

f : R → R is continuous at x if and
only if for each sequence of point
x1, x2, . . . that converge to x, we have
f (xn) → f (x) as x → ∞. In a natural
way increasing sets An converge to
their union A∞, because the difference
A∞\An shrinks away as n n → ∞.

Proof. To take advantage of the additivity axiom of probability, we
break up the events An into disjoint pieces. For n = 2, 3, 4, . . . let
Bn = An\An−1.
Now we have the disjoint decomposition of An as

An = An−1 ∪ Bn = An−2 ∪ Bn−1 ∪ Bn = · · · = A1 ∪ B2 ∪ · · · ∪ Bn.

Taking union of all the events An gives us the disjoint decomposition

∪∞
n=1 An = A1 ∪ B2 ∪ B2 ∪ B3 ∪ · · ·

By the additivity of probability, and by expressing the infinite series
as the limit of partial sums,

P(∪∞
n=1 An) = lim

n→∞
(P(A1) + P(B2) + ·+ P(Bn)) = lim

n→∞
P(An).

Q.E.D

1.5 Measurability

Every subset of a discrete sample space Ω is a legitimate event. For
example, the sample space of flipping a single coin is Ω = {H, T}
and the collection of events is F = {∅, {H} , {T}, {H, T}}, which is
exactly the collection of all subsets of Ω, namely the power set of Ω.

This all seems very straightforward. But there can be good reasons
to use smaller collection F of events. It can be useful for modeling
purposes, and solve the technical problems with uncountable sample
spaces preventing us from taking the F as the power set.

To put the theory on a sound footing, we extend the axiomatic
framework to impose the following requirements on the collection of
event F :

Definition 2 (σ − algebra). Any collection F of sets satisfying the fol-
lowing properties is call σ − algebra or σ − f ield.

1. the empty set ∅ is a member of F ,

2. if A is in F , then Ac is also in F ,

3. if A1, A2, A3, · · · is a sequence of events in F , then their union
∪∞

i=1 Ai is also in F .

The members of a σ − algebra are called measurable sets. The prop-
erties of a σ − algebra imply that countably many applications of the
usual set operations to events is a safe way to produce new events.
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Fortunately all reasonable sets and functions encountered in prac-
tice are measurable.

Another aspect of the collection F of events is that it can represent
information.

2 Conditional probability and independence

2.1 Condition probability
Fact:
Let B be an event in the sample space Ω
such that P(B) > 0. Then, as a function
of the event A, the conditional proba-
bility P(A|B) satisfies the Kolmogorov
Axioms. Especially, we have
P(∪∞

i=1Bi |A) = ∑∞
i=1 P(Bi |A)

where, Bi ∩ Bj = ∅ for i ̸= j

Definition 3 (Conditional probability).
Let B be an event in the sample space Ω such that P(B) > 0. Then for all
events A the conditional probability of A given B is defined as

P(A|B) = P(AB)
P(B)

Theorem 8. Suppose that we have an experiment with finitely many
equally likely outcomes and B is not the empty set. Then, for any
event A

P(A|B) = #AB
#B

Or simply, we have

P(A ∩ B) = P(B|A)P(A) = P(A|B)P(B)

Hints:

1. If required to find P(A ∩ B), look for
either P(A) or P(B) and one of the
conditional probabilities.

2. In word problems "of those that"
implies a conditional probability.

3. Do not confuse "and" with "given
that"

Theorem 9 (Multiplication rule for n events). If A1, ..., An are events
and all the conditional probabilities below make sense then we have

P(A1 · · · An) = P(A1)P(A2|A1)P(A3|A2 A1) · · · P(An|A1 · · · An−1)

Nots: This implies that problems involving the intersection of
several events can be simplified to a great extent by conditioning
backwards.

Three special cases of connditional probability

1. Let A and B be two disjoint events, then, A ∩ B = ∅ and
P(B|A) = 0, since P(A ∩ B) = 0

2. Let A and B be two events, such that B ⊂ A. Then,
P(B|A) = P(A∩B)

P(A)
= P(B)

P(A)

3. Let A and B be two events, such that A ⊂ B. Then,
P(B|A) = P(A∩B)

P(A)
= P(A)

P(A)
= 1

Calculating probability by decomposition

For example, a general version of the reasoning can be:

P(A) = P(AB) + P(ABc) = P(A|B)P(B) + P(A|Bc)P(Bc). (1)

The idea is the decomposition of a complicated event A into disjoint
pieces that are easier to deal with. Above we used the pair {B, Bc} to
split A into two pieces. {B, Bc} is an example of a partition.
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Definition 4 (Partition). A finite collection of event {B1, . . . , Bn} is a
partition of Ω if the sets Bi are pairwise disjoint and together they make
up Ω. That is , BiBj = ∅ whenever i ̸= j and ∪n

i=1Bi = Ω
This equation is true for the same
reason as the eq. (1).
Namely, set algebra gives

A = A ∩ Ω = A ∩
(

n⋃
i=1

Bi

)
=

n⋃
i=1

ABi

P(A) = P(
n⋃

i=1

ABi)

Theorem 10 (The Law of Total Probability). Suppose that B1, . . . , Bn

is a partition of Ω with P(Bi) > 0 for i = 1, . . . , n. Then for any event
A we have

P(A) =
n

∑
i=1

P(ABi) =
n

∑
i=1

P(A|Bi)P(Bi)

More generally, P(A) = E [P(A|X)].
Bayes’ formula for two events.
For events A and B,

P(A|B) = P(AB)
P(B)

=
P(B|A)P(A)

P(B)

post = likehood * prior/marginization

Definition 5 (General Version of Bayes’ Formula). Let B1, . . . , Bn be
a partition of the sample space Ω such that each P(Bi) > 0. Then for any
event A with P(A) > 0, and any k = 1, . . . , n.

P(Bk|A) =
P(ABk)

P(A)
=

P(A|Bk)P(Bk)

∑j(A|Bj)P(Bj)

3 Random Variables

3.1 A First Look

In addition to basic outcomes themselves, we are often interested in
various numerical values derived from the outcomes.

Definition 6 (Random Variable). Let Ω be a sample space. A random
variable is a function from Ω into the real number.

Some conventions:
Random variables, not variables but
functions, are usually denoted by
capital letters such as X, Y and Z. The
value of a random variable X at sample
point ω is X(ω).

Definition 7 (Probability Distribution). Let X be a random variable.
The probability distribution of the random variable X is the collection
of probabilities P(X ∈ B) for sets B of real numbers.

The probability distribution of a random variable is an assignment of
probability to subsets of R that satisfies again the axioms of probabil-
ity.

That said, if the range of the random
variable X is finite or countably infinite,
then X is a discrete variable. Those k for
which P(X = k) > 0 are the possible
values of X.

Definition 8 (Discrete Random Variable). A random variable X is a
discrete random variable is there exists a finite or countably infinite set
{k1, k2, k3, . . . } of real numbers such that

∑
i

P(X = ki) = 1

where the sum ranges over the entire set of points {k1, k2, k3, . . . }.

Definition 9 (Continuous Random Variable). A random variable
X with CDF FX(x) is saed to be Continuous if FX(x) is a continuous
function for all x ∈ R.
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3.2 Different kinds of random variables

Bernoulli random variable Examples:

• Making application for a job

• Tossing a coin

• Getting tested for Covid-19

A bernoulli random variable is related to the occurrence (or non-
occurrence) of a certain event E. If event E occurs, then X = 1; other-
wise, X = 0.

Binomial random variable

Before introducing the Binomial Distribution, we need to define the
Binomial Experiment.

Definition 10 (Binomial experiment). A experiment is called a bino-
mial experiment if it satisfies the following conditions:

• it consists of n independent Bernoulli trials

• the probability of success p remain constant from trial to trial

• We are interested in x successes out of n trials.
Where x = 0, 1, 2, . . . , n.

Bernoullil trial is a trial with two
outcomes, success and failure. A
success is the outcome of interest. Let’s
denote the probability of success as p.

Definition 11 (Binomial random variable). Let X be the random
variable that counts the number of successes in n Bernoulli trials, where
the probability of success in each trial is p. Then X is a Binomial random
variable with the parameters n and p, and it’s probability distribution is
called the Binomial distribution. We say X ∼ B(n, p).

Theorem 11. For a binomial random variable X ∼ B(n, p), the probabil-
ity mass function is given by

P(X = x) =
(

n
x

)
px(1 − p)n−x

x measures the number of successes in
n independent Bernoulli trials.Geometric random variable

Sometimes we are interested in the number of trials needed to get the
first success.
Definition 12 (Geometric random variable). A random variable X is
said to have a geometric distribution with parameter p if it’s probability
mass function is given by

P(X = x) = (1 − p)x−1 p

where x = 1, 2, 3, . . ., and 0 < p < 1.
The random variable X is the number
of trials at which the first success
occurs.Theorem 12. Let X be a random variable with a geometric distribution

with parameter p. Then

P(X = x) = (1 − p)x−1 p,

where x = 1, 2, 3, . . . and 0 < p < 1.
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Note that

• The Binomial random variable gives the number of successes in
the fixed number of trials.

• The Geometric random variable gives the number of trials at
which the first success occurs, where the number of trials is not
fixed.

Negative Binomial random variable
Definition 13 (Negative binomial random variable). The negative
binomial random variable X gives the trial on which the rth success oc-
curs in a sequence of independent Bernoulli trials. Each trial has two
possible outcomes, success and failure. THe probability of success remains
constant from trial to trial.

Theorem 13. Let X be negative binomial random variable, then

P(X = x) =
(

x − 1
r − 1

)
pr(1 − p)x−r

where x = r, r + 1, r + 2, . . . and 0 < p < 1.

Poisson random variable
Definition 14 (Poisson random variable). A random variable X is
said to have a Poisson distribution with parameter λ if it’s probability
mass function is given by

P(X = x) =
e−λλx

x!

where x = 0, 1, 2, . . . and λ > 0.

Theorem 14. Let X ∼ Binom(n, p), where n → ∞ and p → 0 and
np = λ (constant). Then

P(X = x) = lim
n→∞

(
n
x

)
px(1 − p)n−x =

e−λλx

x!

Proof.

lim
n→∞

P(X = x) = lim
n→∞

(
n
x

)
px(1 − p)n−x (2)

= lim
n→∞

(
n
x

)
(

λ

n
)x(1 − λ

n
)n−x (3)

(4)

For x = 0, 1, 2, . . . and λ > 0.
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Hypergeometric random variable
Definition 15 (Hypergeometric random variable). The random
variable X is a hypergeometric random variable with parameters A hy-
pergeometric random variable X represents the number of successes in
n draws without replacement from a finite population of size N that
contains exactly K successes. It models situations where sampling is
done without replacement, and each draw changes the probabilities of
subsequent draws.

The probability mass function is:

P(X = k) =
(K

k)(
N−K
n−k )

(N
n )

where k = 0, 1, 2, . . . , n and 0 ≤ k ≤ min(n, K).

3.3 Probability Distributions of Random Variables

The function pX gives the probability of
each possible value of X. Probabilities
of other events of X then come by
additivity: for any subset B ⊂ R

P(X ∈ B) = ∑
k∈B

P(X = k) = ∑
k∈B

pX(k)

Definition 16 (Probability Mass Function). The probability mass
function (p.m.f) of a discrete random variable X is the function p (or pX)
defined by

p(k) = P(X = k)

for possible values k of X.

In fact, if f satisfies this definition, then

P(X ∈ B) =
∫

B
f (x)dx

for any subset B of the real line for
which integration makes sense.

Definition 17 (Probability Density Function). Let X be a random
variable. If a function f satisfies

P(X ≤ b) =
∫ b

−∞
f (x)dx

for all real values b, then f is the probability density function(p.d.f) of
X.

Theorem 15. If a random variable X has density function f then point
values have probability zero:

P(X = c) =
∫ c

c
f (x)dx = 0 for any real c

It follows that a random variable with a density function is not dis-
crete, and the probabilities of interval are not changed by including
or excluding endpoints.

Remark. A random variable X can not have two different density
functions.
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3.4 Cumulative Distribution Function

Definition 18 (Cumulative Distribution Function). The cumulative
distribution function (c.d.f) of a random variable X is defined by

F(s) = P(X ≤ s) for all s ∈ R
Be mindful of the convention that the
inequality is ≤ in the equation.The cumulative distribution function gives a way to describe the

probability distribution of any random variable, including those that
do not fall into the discrete or continuous categories. The cumula-
tive distribution function give probabilities of left-open right-closed
intervals of the form (a,b]:

P(a < X ≤ b) = P(X ≤ b)− P(X ≤ a) = F(b)− F(a)

Note that:

• the domain of the CDF is the real line (−∞,+∞) with the range
[0, 1].

• CDF is a non decreasing function, that is, F(x) ≤ F(y) for x ≤ y.

• The CDF is right continuous. It does not jump at x when you
approach x from above (limx→a+ F(x) = F(a)).

However, contrary to discrete random
variables, the CDF of a continuous ran-
dom variable is a continuous function
(there are no jumps).

Knowing these probabilities is enough to determine the distribu-
tion of X completely.

Cumulative distribution function of a discrete random variable

F(s) = P(X ≤ s) = ∑
k:k≤s

P(X = k) (5)

where the sum extends over those possible values k of X that are less
than or equal to s.

Cumulative distribution function of a continuous random variable It is important to notice the dy here.
This is a dummy variable of integration.
Conventionally, we do this to avoid
confusion with the random variable X.

F(s) = P(X ≤ s) =
∫ s

−∞
fX(y)dy (6)

This equation comes from the definition of probability density func-
tion.

Theorem 16. Let the random variable X have cumulative distribution
function F.

1. Suppose F is piecewise constant. Then X is a discrete random variable.
The possible values of X are the locations where F has jumps, and if x
is such a point, then P(X = x) equals the magnitude of the jump of F
at X.

2. Suppose F is continuous and the derivative F′(x) exists everywhere
on the real line, except possibly at finitely many points.
Then X is continuous random variable and f(x) = F’(x) is the density
function of X. If F is not differentiable at x, then the value f(x) can be
set arbitrarily.
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3.5 Expectation and variance

Expectation of a discrete random variable
Definition 19. The expectation or mean of a discrete random variable X
is defined by

E(X) = ∑
k

kP(X = k)

where the sum ranges over all the possible values k of X.

The expectation is also called the first moment, conventionally de-
noted as µ = E(X). The expectation is the weighted average of the
possible outcomes, where the weights are given by probabilities.

Expectation of a continuous random variable

In continuous case averaging is naturally done via integrals. The
weighting is given by the density function.

It is important to keep separate the
random variable (X on the left) and the
integration variable(x on the right).

Definition 20. The expectation or mean of a continuous random variable
X with density function f is

E[X] =
∫ ∞

−∞
x f (x)dx

An alternative symbol is µ = E[X].

Variance of a continuous random variable Properties of expectation and variance:

E[a] = a for any constant a

E[aX + bY] = aE[X] + bE[Y]

Var(aX + b) = a2Var(X)

Definition 21. The variance of a continuous random variable X is:

E(X − µ)2 =
∫ ∞

−∞
(x − µ)2 f (x)dx

or
Var(X) = E(X2)− [E(X)]2 =

∫ ∞

−∞
x2 f (x)dx − [E(X)]2

Expectation of a function of a random variable

Taking a function of an existing random variable creates a new ran-
dom variable.

Theorem 17. Let g be a real-valued function defined on the range of a
random variable X. If X is a discrete random variable then

E[g(X)] = ∑
k

g(k)P(X = k)

while if X is a continuous random variable with density function f then

E[g(X)] =
∫ ∞

−∞
g(x) f (x)dx

Proof. The key is that the event g(X)=y is the disjoint union of the
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events X=k over those values k that satisfy g(k)=y:

E[g(X)] = ∑
y

yP(g(X) = y) = ∑
y

y ∑
k:g(k)=y

P(X = k)

= ∑
y

∑
k:g(k)=y

yP(X = k) = ∑
y

∑
k:g(k)=y

g(k)P(X = k)

= ∑
k

g(k)P(X = k)

Theorem 18. The n th moment of the random variable X is the expecta-
tion E(Xn). In the discrete case the nth moment is calculated by

E(Xn) = ∑
k

knP(X = k)

If X has density functino f its nth moment is given by

E(Xn) =
∫ ∞

−∞
xn f (x)dx

The second moment, E(X2), is also
called the mean square.

Theorem 19. The n th moment about the mean of a continuous random
variable X is

E(X − µ)n =
∫ ∞

−∞
(x − µ)n f (x)dx

3.6 Special continuous distributions

Continuous uniform distribution
Definition 22 (Continuous uniform distribution). A random variable
X is said to have a continuous uniform distribution on the interval [a, b],
shown as X ∼ Uniform(a, b), if it’s probability density function is given
by

fX(x) =

 1
b−a for a ≤ x ≤ b

0 otherwise
The continuous uniform distribution
with a = 0 and b = 1 is called the
standard uniform distribution.

The support of continuous random variables is the set of all num-
bers whose probability density function is positive. For the contin-
uous uniform distribution X ∼ Uniform(a, b), the support is the
interval [a,b].

Properties of the continuous uniform distribution: Proof.

E(X) =
∫ b

a
x

1
b − a

dx =
1

b − a

∣∣∣x2/2
∣∣∣b
a
=

a + b
2

E(X2) =
∫ b

a
x2 1

b − a
dx =

1
b − a

∣∣∣x3/3
∣∣∣b
a

=
1
3
(b2 + ab + a2)

Var(X) =
1
3
(b2 + ab + a2)− 1

4
(a + b)2 =

(b − a)2

12

FX(x) =
∫ x

−∞

1
b − a

dy

=
∫ a

−∞

1
b − a

dy +
∫ x

a

1
b − a

ady

= 0 +
x − a
b − a

a < x < b

• E(X) = a+b
2

• Var(X) = (b−a)2

12

CDF of a continuous uniform distribution is given by

FX(x) =


0 for x < a
x−a
b−a for a ≤ x ≤ b

1 for x > b
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Gamma distribution
Definition 23 (Gamma function). The gamma function is defined by

Γ(α) =
∫ ∞

0
xα−1e−xdx

Three properties of the gamma function
are:

1. Γ(α) = (α − 1)Γ(α − 1)

2. If n is a positive integer, then
Γ(n) = (n − 1)!

3. Γ(1/2) =
√

π

Definition 24 (Gamma distribution). A random variable X is said
to have a gamma distribution with parameters α > 0 and β > 0 if it’s
probability density function is given by

fX(x) =


βαxα−1e−βx

Γ(α) for x > 0

0 otherwise

E(X) =
∫ +∞

0
x f (x)dx

=
∫ +∞

0
x

xα−1e−x/β

Γ(α)βα
dx

=
1

Γ(α)βα

∫ +∞

0
xαe−x/βdx

Let y = x/β, then dx/β = dy∫ +∞

0
x f (x)dx =

1
Γ(α)βα

∫ ∞

0
(βy)αe−yβdy

=
1

Γ(α)
β
∫ ∞

0
yαe−ydy

=
1

Γ(α)
βΓ(α + 1)

= αβ
1

Γ(α)
Γ(α)

The expectation is E(X) = αβ and the variance is Var(X) = αβ2.

Chi-square distribution

Let X follows a gamma distribution with α = v/2 and β = 1/2,
where v is a positive integer. Then, in this special case, X is said to
have a chi-square distribution with v degrees of freedom.

Definition 25 (Chi-square distribution). A random variable X is said
to have a chi-square distribution with n degrees of freedom (X ∼ χ2(v)),
if it’s probability density function is given by

fX(x) =


1

2v/2Γ(v/2)
xv/2−1e−x/2 for x > 0

0 otherwise

The chi-square distribution is typically
used to develop hypothesis tests and
confidence intervals, and rarely for
modeling real-world data.

The properties of the chi-square distribution are:

• E(X) = αβ = v/2 × 2 = v

• Var(X) = αβ2 = v × 22 = 2v

Normal distribution
Definition 26 (Normal distribution). A random variable X is said
to have a normal distribution with parameters µ and σ2, shown as
X ∼ N(µ, σ2), if it’s probability density function is given by

fX(x) =
1√
2πσ

e−
(x−µ)2

2σ2

Standard normal distribution is a
special case if µ = 0 and σ = 1.Exponential distribution

Consider the Gamma density function with shape parameter α = 1
and scale parameter β > 0. Then the random variable X is said to
have an exponential distribution.
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Definition 27 (Exponential distribution). A random variable X is
said to have an exponential distribution with parameter β, shown as
X ∼ Exp(β), if it’s probability density function is given by

fX(x) =

 1
β e−

1
β x for x > 0

0 otherwise
The properties of the exponential
distribution are:

• E(X) = β

• Var(X) = β2

• Memoryless property: P(X >
s + t|X > t) = P(X > s)

The CDF of the exponential distribution is given by

FX(x) =


∫ x

0
1
β e−y/βdy = 1 − e−

x
β for x > 0

0 for x ≤ 0

4 Transforms and transformations

4.1 Moment generating functions

Definition 28. The moment-generating function (MGF) of the (distribu-
tion of the) random variable X is the function of a real parameter t defined
by

MX(t) = E[etX ],

for all t ∈ R for with the expectation E[etX ] is welled defined.

Moment generating function of a discrete random variable

MX(t) = E[etX ] = ∑
allx

etkP(X = x) (7)

Moment generating function of a continuous random variable

MX(t) = E[etX ] =
∫ ∞

−∞
etx fX(x)dx (8)

Moments can be computed from the moment-generating function.

Theorem 20. When the moment generating function M(t) of a random
variable X is finite in an interval around the origin, the moments of X are
given by

E(Xn) = M(n)(0).

Also, the PDF (or PMF) of a random variable X can be obtained
from its moment generating function and vice versa.

4.2 Equality in distribution / having the same law

Definition 29 (Equality in distribution). Two random variables X and

Y are said to be equal in distribution, denoted by X d
= Y, if P(X ∈ B) =

P(Y ∈ B) for all (Borel) subsets B of R.
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4.3 From MGF to distributions

Theorem 21. Let X and Y be two random variables with moment gener-
ating functions MX(t) = E(etX) and MY(t) = E(etY). Suppose there
exists δ > 0 such that for all t ∈ (−δ, δ) MX(t) = MY(t) and these are
finite numbers. Then X and Y have the same distribution.

4.4 Distributions of functions of random variables

5 Multivariate probability distributions

A multivariate probability distribution describes the joint behavior or
two or more random variables.

Definition 30 (Joint probability function). Let X and Y be discrete
random variables. The joint probability function of X and Y is the func-
tion pX,Y defined by

pX,Y(x, y) = P(X = x, Y = y)

for all possible values x and y of X and Y.

If X and Y are discrete random variables, then we have:

• pX,Y(x, y) ≥ 0 for all x and y

• ∑x ∑y pX,Y(x, y) = 1

Once the joint PMF is determined, it becomes straight forward to
compute the probability of any event involving X and Y.

Definition 31 (Joint cumulative distribution function). Let X and Y
be random variables. The joint cumulative distribution function of X and
Y is the function FX,Y defined by

FX,Y(x, y) = P(X ≤ x, Y ≤ y)

for all possible values x and y of X and Y.

If X and Y are jointly discrete random variables, then we have:

FX,Y(x, y) = P(X ≤ x, Y ≤ y) = ∑
u≤x

∑
v≤y

pX,Y(u, v) (9)

where, PX,Y(u, v) is the joint PMF of X and Y.
Two random variables X and Y are jointly continuous if there

exists a continuous function fX,Y such that

FX,Y(x, y) = P(X ≤ x, Y ≤ y) =
∫ x

−∞

∫ y

−∞
fX,Y(u, v)dudv (10)
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Generally,

P(X, Y) ∈ A =
∫ ∫

A
fX,Y(u, v)dudv or,

P(a1 ≤ X ≤ a2, b1 ≤ Y ≤ b2) =
∫ a2

a1

∫ b2

b1

fX,Y(u, v)dudv

5.1 Marginal probability distributions

Definition 32 (Marginal probability mass function). Let X and Y be
discrete random variables with joint probability mass function pX,Y. The
marginal probability mass function of X is the function pX defined by

pX(x) = P(X = x) = ∑
y

P(X = x, Y = y) = ∑
y

pX,Y(x, y)

for all possible values x of X.

Definition 33 (Marginal probability density function). Let X and Y
be continuous random variables with joint probability density function
fX,Y. The marginal probability density function of X is the function fX

defined by

fX(x) =
∫ ∞

−∞
fX,Y(x, y)dy

for all possible values x of X.

Definition 34 (Marginal cumulative distribution function). Let X
and Y be random variables with joint cumulative distribution function
FX,Y. The marginal cumulative distribution function of X is the function
FX defined by

FX(x) = P(X ≤ x) = P(X ≤ x, Y ≤ ∞) = FX,Y(x, ∞)

= lim
y→∞

FX,Y(x, y) for any possible values x of X.

lim
x,y→∞

FX,Y(x, y) = 1

lim
x,y→−∞

FX,Y(x, y) = 0

To obtain PDF we can differentiate the CDF.

Definition 35 (Joint probability density function). Let X and Y be
continuous random variables. The joint probability density function of X
and Y is the function fX,Y defined by

fX,Y(x, y) =
∂2

∂x∂y
FX,Y(x, y)

for all possible values x and y of X and Y.

To obtain PMF from CDF we can differentiate the CDF with re-
spect to x and y. But this becomes more complicated in higher di-
mensions.
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Theorem 22. Let g(Y1, Y2) be some function of two random variables Y1

and Y2. Then the expectation of g(Y1, Y2) is

E[g(Y1, Y2)] = ∑
y1

∑
y2

g(y1, y2)pY1,Y2(y1, y2)

for discrete random variables and

E[g(Y1, Y2)] =
∫ ∞

−∞

∫ ∞

−∞
g(y1, y2) fY1,Y2(y1, y2)dy1dy2

for continuous random variables.

Theorem 23. Let g(Y1, Y2) be some function of two random variables Y1

and Y2. Then the expected value of E(Yi) is given by

E(Yi) =
∫ ∞

−∞
yi fYi (yi)dyi.

Generally, the expected value E(Yk
i ) is given by

E(Yk
i ) =

∫ ∞

−∞
yk

i fYi (yi)dyi i = 1,2.

6 Conditional Distributions and Expectation

6.1 Conditioning on an event

First new definition comes by applying P(A|B) = P(AB)
P(B) to an event

A = {X = k} for a discrete random variable X.

Definition 36 (Conditional probability mass function of X, given
B). Let X be a discrete random variable and B an event with P(B)>0,
Then the conditional probability mass function of X, given B is the func-
tion pX|B defined as follows for all possible values k of X:

pX|B(k) = P(X = k|B) = P({X = k} ∩ B)
P(B)

.

Just like a regular probability mass
function, its values are nonnegative and
sum up to one.

The key point above was that the events {X = k} ∩ B are disjoint
for different values of k and their union over k is B.
We can use the conditional probability mass function to compute an
expectation.

Definition 37 (Conditional expectation of X, given the event B). Let
X be a discrete random variable and B an event with P(B)>0, Then the
conditional expectation of X, given the event B is the function, is denoted
by E[X|B]and defined as

E[X|B] = ∑
k

kpX|B(k) = ∑
k

kP(X = k|B)

where the sum ranges over all possible values k of X.
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Applying the averaging principle P(A) = ∑n
i=1 P(A|Bi)P(Bi) to an

event A = {X = k} gives the following identity:

Theorem 24. Let Ω be a sample space, X a discrete random variable
on Ω, and B1, . . . , Bn a partition of Ω such that each P(Bi) > 0. Then
the (unconditional) probabilities mass function of X can be calculated by
averaging the conditional probabilities mass function:

pX(k) =
n

∑
i=1

pX|Bi
P(Bi).

The averaging idea extends to expectations.

Theorem 25. Let Ω be a sample space, X a discrete random variable on
Ω, and B1, . . . , Bn a partition of Ω such that each P(Bi) > 0. Then

E[X] =
n

∑
i=1

E[X|Bi]P(Bi).

6.2 Conditioning on a random variable

Let the partition in "Conditioning on an event" part come from an-
other discrete randomvariable Y, then we followings.

Definition 38 (Conditional Probability Mass Function). Let X and Y
be discrete random variables. The conditional probability mass function of
Y given X = x is the folloing two-variable function:

pY|X(y|x) = P(Y = y|X = x) =
P(Y = y, X = x)

P(X = x)
=

pY,X(y, x)
pX(x)

.

The conditional expectation of Y given X = x is

E[Y|X = x] = ∑
y

y · P(Y = y | X = x) = ∑
y

y · pY|X(y|x).

The definition above are valid for y such that P(X = x) > 0.
The conditional probability mass
function pY|X(y|x) is just a probability
mass function in x for each fixed value
of y, whenever pX(x) > 0.
The conditional expectation also sat-
isfies familiar properties of usual
expectation. For example:

E[g(Y)|X = x] = ∑
y

g(y) · pY|X(y|x)

As y varies, the events Y=y form a partition of Ω. Hence, we have

Theorem 26. Let X and Y be discrete random variables. Then

pX(x) = ∑
y

pX|Y(x|y)pY(y)

and
E(X) = ∑

y
E[X|Y = y]pY(y).

The sums extend over those values y such that pY(y) > 0
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6.3 Conditional distribution for jointly continuous random variables

Definition 39 (Conditional Probability Density Function). Let X
and Y be jointly continuous random variables with joint density function
fX,Y(x, y). The conditional probability density function of Y given X = x
is,

fY|X(y|x) =
fX,Y(x, y)

fX(x)

Just as an ordinary density function, a conditional one can also
be used to calculated conditional probabilities and expectations. The
definition below gives the continuous counterpart of the discrete
formula.

Definition 40. The conditional probability that X ∈ A, given Y = y, is

P(X ∈ A|Y = y) =
∫

A
fX|Y(x|y)dx.

The conditional expectation of g(X), given Y = y, is

E[g(X)|Y = y] =
∫ ∞

−∞
g(x) fX|Y(x|y)dx.

The quantities above are defined for y such that fY(y) > 0.

The averaging identities also works in the continuous case.

Theorem 27. Let X and Y be jointly continuous. Then

fX(x) =
∫ ∞

∞
fX|Y(x|y) fY(y)dy.

For any function g for which the expectations below make sense,

E[g(X)] =
∫ ∞

∞
E[g(X)|Y = y] fY(y)dy.

Summary of conditional probability

• Total Probability

P(A) = E[P(A|X)]

• Total Expectation

E[Y] = E[E[Y|X]]

• Total Conditional Expectation

P(Y|A) = E[P(Y|X, A)|A]

• Total Conditional Probability

E[Y|A] = E[E[Y|X, A]|A]

6.4 Conditional expectation

In this section we discuss a conditional expectation that achieves
some degree of unification of treatment of discrete and continuous
random variables. A quick recap:

Definition 41 (Conditional Expectation). Let X and Y be discrete or
jointly continuous random variables. The conditional expectation of Y
given X = x, denoted by E[Y|X = x](x), is a function of x,

E[Y|X = x](x) =

∑y y · P(Y = y | X = x) Ω is discrete∫ ∞
−∞ y · fY|X(y | x)dy Ω is continuous
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Before, we have the conditional expectation of X given Y = y, de-
noted by E[X|Y = y]. For each legitimate y-value, E[X|Y = y] is
a real number. We think of it as a function of y, denoted by v(y) =

E[X|Y]. We can summarize the construction also by saying that the
random variable E(X|Y) takes the value E[X|Y = y] when Y = y. The key idea is that E[X|Y = y] is a real

number, and it’s a possible value of the
function E(X|Y).Definition 42 (Conditional expection as a random variable). Let X

and Y be discrete or jointly continuous random variables. The conditional
expectation of X given Y, denoted by E(X|Y), is by definition the random
variable v(Y) where the function v is defined by v(y) = E(X|Y = y).

Definition 43. The conditional expectation of Y given A, for discrete
case, is,

E(Y|A) =
1

P(A) ∑
y

yP({Y = y} ∩ A) = ∑
y

yP(Y = y|A)

Definition 44 (Law of Total Expectation). If A1, . . . , Ak partitions Ω
and Y is a random variable, then the law of total expectation states
that,

E [Y] =
k

∑
i=1

E[Y|Ai]P(Ai)

More generally, E [Y] = E[E[Y|X]]

Proof. For the discrete case,

E[E[Y|X]] = ∑
x

E[Y|X = x] · P(X = x)

= ∑
x

(
∑
y

y · P(Y = y | X = x)

)
P(X = x)

= ∑
y

y ∑
x

P(Y = y | X = x) · P(X = x)

= ∑
y

y ∑
x

P(Y = y, X = x)

= ∑
y

y · P(Y = y)

= E(Y)

6.5 Conditioning on multiple random variables
A prelude to stochastic processes!
Finally we’re about to get there.A stochastic process in discrete time is a sequence of random vari-

ables X0, X1, X2, . . . . One can think of this sequence as the time evo-
lution of a random quantity. The random variable Xn is called the
state of the process at time n.

P(X0 = x0, X1 = x1, . . . , Xn = xn) = P(X0 = x0)P(X1 = x1|X0 = x0)

· · · P(Xn = xn|X0 = x0, . . . , Xn−1 = xn−1)
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A larger important class of stochastic processes have the property
that, at any given time, the past influences the future only through
the present state. Concretely speaking, all but the last state can be
drop from the conditioning side of each conditional probability in the
equation above.

Definition 45 (Markov Chain). Let X0, X1, X2, . . . be a stochastic pro-
cess oif discrete random variables. This process is a Markov chain if

P(Xn+1 = xn+1|X0 = x0, . . . , Xn = xn) = P(Xn+1 = xn+1|Xn = xn)

for all n ≥ 0 and all x0, . . . , xn such that P(X0 = x0, X1 =

x1, . . . , Xn = xn).

6.6 Independence

Definition 46. If Y1, Y2 are discrete random variables with joint proba-
bility mass function pY1,Y2 and marginal probability mass functions pY1

and pY2 , then Y1 and Y2 are independent if and only if

pY1,Y2(y1, y2) = pY1(y1)pY2(y2)

for all pairs of real numbers y1 and y2.

Definition 47. If Y1, Y2 are continuous random variables with joint
density function fY1,Y2 and marginal density functions fY1 and fY2 ,
respectively. Then Y1 and Y2 are independent if and only if

fY1,Y2(y1, y2) = fY1(y1) fY2(y2)

for all pairs of real numbers y1 and y2.

6.7 Moment generating functions

Moment generating functions are very important computational
tools.

Theorem 28. Suppose that X and Y are independent random variables
with moment generating functions MX(t) and MY(t), respectively. Then
for all real numbers t,

MX+Y(t) = MX(t)MY(t)
This results can be helpful in finding
the distribution of the sum of random
variables, which can be extremely
challenging otherwise.

Note that the moment generating function of a random variable is
unique. So if we have the MGF, we can find its distribution.
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6.8 Covariance

Definition 48. Let X and Y be random variables defined on the same
sample space with the expectation E(X) = µX and E(Y) = µY. The
covariance of X and Y is defined as

Cov(X, Y) = E[(X − µX)(Y − µY)]

if the expectation on the right is finite.

Theorem 29. The covariance of X and Y can also be calculated as

Cov(X, Y) = E(XY)− E(X)E(Y)

7 Tail bounds and limit theorems

7.1 Central limit theorem

Theorem 30 (CLT - Independence).
The random variables X1, X2, . . . , Xn are independent iff

• fX1,X2,...,Xn(x1, x2, . . . , xn) = fX1(x1) fX2(x2) . . . fXn(xn)

(Continuous case)

• Var(∑n
i=1 Xi) = ∑n

i=1 Var(Xi)

• MX1+X2+...+Xn(t) = MX1(t)MX2(t) . . . MXn(t)

Theorem 31 (Central limit theorem).
Suppose that we have independent and identically distributed random
variables X1, X2, . . . with finite mean E[X1] = µ and finite variance
Var(X1) = σ2. Let Sn = X1 + X2 + · · · + Xn. Then for any fixed
−∞ ≤ a ≤ b ≤ ∞ we have

lim
n→∞

P
(

a ≤ Sn − nµ

σ
√

n
≤ b

)
= Φ(b)− Φ(a) =

∫ b

a

1√
2π

e−y2/2dy

where Φ is the standard normal distribution function.

That said, we find the mean and variance of S as:

E[Sn] = nµ

Var(Sn) = nσ2

8 Time-Homogeneous Markov Chains

8.1 Finite State, Time-Homogeneous Chains

Definition 49 (Finite State Stochastic Process). A finite state
stochastic process (Xn)n≥0 has time steps in N and values in
S = [N − 1].
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Definition 50 (Markov Property). The Markov property claims that
for every n ∈ N and every sequence of states (i0, i1, . . . ) where ij ∈ S,
the behavior of a system depends only on the previous state,

P(Xn = in|X0 = i0, . . . , Xn−1 = in−1) = P(Xn = in|Xn−1 = in−1)

Definition 51 (Time Homogeneity). A markov chain is time-
homogenous if the probabilities in definition above do not depend on
n,

P(Xn = in|Xn−1 = in−1) = P(X1 = i1|X0 = i0) (n ∈ N)

Definition 52 (Transition Matrix). The transition matrix P for a
time-homogeneous Markov chain is the N × N matrix whose (i, j)th en-
try Pij is the one-step transition probability p(i, j) = P(X1 = j|X0 = i)

Remark. The transition matrix P is
stochastic, that is,

• (Non-Negative Entries) 0 ≤ Pij ≤ 1
for 1 ≤ i, j ≤ N.

• (Row Sum Equal to 1) ∑N
j=1 Pij = 1

for 1 ≤ i ≤ N.

Example 1

Let (Xn)n≥0 denote a sequence of coin flips where,

P(Xn+1 = H | Xn) =

0.51 if Xn = H

0.49 if Xn = T

and,

P(Xn+1 = T | Xn) =

0.51 if Xn = T

0.49 if Xn = H

Then,

P =

(
0.51 0.49
0.49 0.51

)
=

(
PHH PHT

PTH PTT

)

8.2 Transition Probabilities

Definition 53 (Probability Distribution Vector). The distribution of
a discrete random variable X is the vector ϕ⃗ if,

ϕj = P(X = j) ∀j ∈ N

Definition 54 (Initial Distribution Vector). The initial probability
distribution of a Markov chain (Xn)n≥0 is the distribution ϕ⃗ of X0.

Definition 55 (Transition Probabilities). The n-step transition prob-
ability pn(i, j) = P(Xn = i|X0 = j) is the (i,j)th entry in the matrix
Pn.
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