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Abstract

1 Foundation

1.1 Set Theory

A set is a collection of distinct objects, called its elements or its mem-
bers.

Set inclusion
Proposition 1. The sets

A = {x ∈ Z : there exists k ∈ Zsuch that x = 2k + 1}

and
B = {x ∈ Z : there exists k ∈ Zsuch that x = 2l + 5}

are equal. (Both are different ways of describing the set of all odd inte-
gers.)

Proof. Let x ∈ A. Then there exists k ∈ Z such that x = 2k + 1.
Letting l = k− 2, we found that l is an integer. Furthermore,

x = 2k + 1 = 2(k− 2) + 5 = 2l + 5.

We have found l such that x = 2l + 5, so x ∈ B. This shows that
A ⊆ B.

On the other hand, let x ∈ B. Then there exists l ∈ Z such that
x = 2l + 5. Now we let k = l + 2; k ∈ Z since l ∈ Z. We have

x = 2l + 5 = 2(l + 2) + 1 = 2k + 1.

This shows that x ∈ A, so B ⊆ A. This combined with the previous
paragraph show A = B.

Set operations

• The union of two sets A and B, denoted by A ∪ B, is the set of all
elements that are in A or in B.

• The intersection of two sets A and B, denoted by A ∩ B, is the set of
all elements that are in both A and B.

• The difference of two sets A and B, denoted by A\B, is the set of all
elements that are in A but not in B.

• The symmetric difference of two sets A and B, denoted by A△B, is
the set of all elements that are in exactly one of A and B.
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1.2 Propositional Logic

Conditional and biconditional. The conditional logical relation IF q
THEN p is denoted by p ⇒ q. Within the conditional statement, p The logical formula of these two con-

ditionals are: p ⇒ q ≡ ¬p ∨ q and
q⇒ p ≡ ¬q ∨ p.

is called the antecedent, which is the assumption. The consequent is q,
which is the conclusion. The biconditional logical relation p IF AND
ONLY IF q is denoted by p ⇔ q. It asserts that variables p and q are
logically equivalent.

p q p⇒ q p⇔ q
1 1 1 1

1 0 0 0

0 1 1 0

0 0 1 1

Table 1: Truth table for conditional and
biconditional relations

A formula is called a

• tautology if it is true for all possible truth values of its variables.

• contradiction if it is false for all possible truth values of its vari-
ables.

• contingency if it is neither a tautology nor a contradiction.

• satisfiable if there is an assignment of truth values to its variables
that makes it true.

• falsifiable if there is an assignment of truth values to its variables
that makes it false.

Tutorial

1. p⇒ p: tautology, since ≡ ¬p∨ p = 1

2. (p ⇒ q) ⇒ p: contingency, true if
p = q = 1, false if p = 0.
(When p = 0, p ⇒ qis always true,
and a ture ⇒ f alse(p) is always
false.)

3. (¬(p ∧ ¬q)) ∨ p ≡ 1: tautology.

4. (p⇔ q) ∧ (p⇔ ¬q): contradictory.

Example 1

Prove that a logical formula is satisfiable
iff. its negation is falsifiable.

Proof. A logical formula is satisfiable
iff there is an assignment of all the
variables which makes the formula
true. By definition of the negation,
this assignment makes the negation
of our formula false, which means
the negation is falsifiable. Proof of the
converse is analogous.

1.3 Predicate Logic

Definition 1 (Predicate). A predicate is a statement containing some
number of variable coming from a universe u.

Negating quantifiers. By De Morgan’s laws, we have

¬(∀x ∈ U, P(x)) ≡ ∃x ∈ U,¬P(x),

¬(∃x ∈ U, P(x)) ≡ ∀x ∈ U,¬P(x).

Let’s do some example. We express the statement, "There is a
nonzero real numnber such that every real number is not its inverse
or is negative." In the universe R, ths formula corresponding to the
statement is

∃x : (x ̸= 0∧ (∀y : xy ̸= 1∨ y < 0)).
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If a formula is true then its negation is false. Let’s deriv the negation
of the formula above:

¬(∃x :(x ̸= 0∧ (∀y : xy ̸= 1∨ y < 0)))

≡ ∀x : ¬(x ̸= 0∧ (∀y : xy ̸= 1∨ y < 0))

≡ ∀x : (x = 0∨ ¬(∀y : xy ̸= 1∨ y < 0))

≡ ∀x : (x = 0∨ ∃y : ¬(xy ̸= 1∨ y < 0))

≡ ∀x : (x = 0∨ ∃y : xy = 1∧ y ≥ 0).

Negating a formula in predicate logic is entirely mechanical. The ¬
symbol moves from left to right, flipping the quantifiers and negating
the predicates as it goes.

1.4 Proof Techniques

Proofing statement of the form p⇒ q

We assume p is true, prove q, which is showing the case that p is true
be q is false can’t happen.

Proposition 2. If n is an odd integer, then n2 is an odd integer.

Write the proposition in predicate formula:

u = Z, ∀n : ((∃k : n = 2k + 1)⇒ (∃n2 = 2l + 1))

proof. Let n be ana integer. Assume that n is odd, that is, there exist k
such that n = 2k + 1.
Then, n2 = (2k + 1)2 = 2(2k2 + 2k) + 1. Let l = 2k2 + 2k, then
n2 = 2l + 1, thus, it’s odd.

To disprove a statement: prove its negation is true

Proposition 3. Disprove the statement: ∃x∀y : x + y ̸= 0.

Proof. To disprove, we shall prove its negation: ∀x∃y : x + y = 0 ≡
¬(∃x∀y : x + y ̸= 0) Let x ∈ R be given. Pick y = −x, then x + y = 0.
Q.E.D Since p ∧ ¬p ≡ 0

Converse and Contrapositive
Definition 2.

1. the converse of p⇒ q is q⇒ p
NB. p⇒ q ̸≡ q⇒ p

2. the contrapositive of p⇒ q is¬q⇒ ¬p
p⇒ q ≡ ¬p ∨ q ≡ ¬q⇒ ¬p
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Proofs by contradiction

You assume something is true, and get something nonsense.
¬p⇒ 0 ≡ ¬(¬p) ∨ 0 ≡ p

Proposition 4. There is no least positive rational number.
u = Q : ¬(∃x : x > 0∧ (∀y : y > 0⇒ x ≤ y))

Proof. Suppose, for a contradiction that the proposition is false,
that is, there exist x ∈ Q such that x > 0 and for all y ∈ Q with
y > 0, x ≤ y.
Let y = x

2 , we have x
2 > 0 since x > 0. Then x ≤ y, so x ≤ x

2 .
Divide through by x ( because x > 0) to get 1 ≤ 1

2 .
the contradiction completes the proof. Q.E.D Tutorial: Prove or disprove:

1. ∀n ∈N, ∃m ∈N, n + m = 0
False. Let’s proof its negation:
∃n ∈ N, ∀m ∈ N, n + m ̸= 0, it’s
true, e.g., we can let n = 2.

2. ∀n ∈N, ∃m ∈ Z, n + m = 0
Ture, Let n ∈ N, then choose
m = −n ∈ Z, and we get m + n = 0.

3. ∀n ∈ N, ∃k ∈ N, (k ≥ m) ⇒ (k ≥
5n):
The statement is equivalent to
(k < m) ∨ (k ≥ 5n).
For any n ∈ N, choose m = 5n, then
for all k ∈N, we have that statement
is true.

Case Analysis

Proposition 5. prop. There exists irrational numbers a,b such that ab is
rational.

1.5 Functions

Definition 3 (Surjective and injective). A function is surjective if

∀b ∈ B, ∃a ∈ A, f (a) = b

A function is injective if

∀a1, a2 ∈ A, a1 ̸= a2 → f (a1) ̸= f (a2)

or f (a1) = f (a2)→ a1 = a2.

Theorem 1. Let a1, a2, . . . , an be a finite sequence (repeats allowed) of
real numbers. Let

a =
1
n

n

∑
i=1

ai.

be the average value of the sequence and let m be the maximum value of
the sequence attains. Then m ≥ a.

Theorem 2. Let A and B be finite sets with |A| = m and |B| = n. For
every function f : A → B, then there is some b ∈ B such that there are at
least ⌈m/n⌉ elements in A that get mapped to b.

Corollary 1 (The pigeonhole principle). Let n ≥ 2. If n pigeons nest
in n− 1 holes, there is at least one hole that contains at least two pigeons.
Let f : A→ B be a function. If |A| > |B|, then f is not injective.

Bijections. A function is called bijective if it is both surjective and
injective.
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Proposition 6. Let A and B be finite sets. Then

1. there exists a bijection f : A→ B if and only if |A| = |B|; and

2. if |A| = |B|, f : A → B then f is injective if and only if f is surjec-
tive.

Invertibility. A function f : A→ B is called invertible if there exists
a function g : B→ A such that

1. for all a ∈ A, g( f (a)) = a; and

2. for all b ∈ B, f (g(b)) = b.

If such a function g exists, it is unique, and we call it the inverse of f ,
denoted by f−1.

Proposition 7. Let f : A → B be a function. Then f is invertible if and
only if f is bijective.

Proof. First we assume that f is invertible. So there exists an in-
verse g of f . For each b ∈ B, setting a = g(b) we have

f (a) = f (g(b)) = b.

This prove that f is surjective. To show that f is injective, suppose
that f (a1) = f (a2). By applying g to both sides, we get g( f (a1)) =

g( f (a2)), whence a1 = a2, by definition of g.
Noew assume that f is bijective. We shall construct an inverse g

of f . Given any b ∈ B, there is some a ∈ A such that f (a) = b,
from surjectivity of f , and this a is unique, by injectivity of f . So
set g(b) = a (and repeat this process for every b ∈ B). We have
f (g(b)) = f (a) = b, and for every a ∈ A, by definition of g the
element g( f (a)) is the unique element in A that gets brought to f (a)
by f , so has to be a itself.

Sometimes to prove that two sets have the same cardinality, it is
easier to prove that there exists a bijection between them. Here is an
example:

Proposition 8. Let X be a finite nonempty set. Let E be the set of all
subsets of X with even cardinality, and let D be the set of all subsets of X
with odd cardinality. Then |E| = |D|.

1.6 Cardinality

We say that A and B are equipotent or have the same cardinality, if and
only if there exists a bijection f : A→ B. We write |A| = |B|. It is possible to remove an infinite

number of elements from N and end
up with something still equipotent with
N.

Theorem 3. We have |N| = |Z|.
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We say that a set A is countably infinite if if there exists a bijection
f : N → A, that is if |N| = |A|. A set is countable if it is finite or
countably infinite. Otherwise it is called uncountable.

Sometimes it is difficult to come up with a bijection between two
sets. Instead, we would like to find an injection from B to A.

Theorem 4 (Schroder-Bernstein Theorem). If there exists an injective
function f : A→ B and another injective function g : B→ A, then there
exists a bijection h : A→ B.

Theorem 5 (Fundamental Theorem of Arithmetic). Every positive
integer n ≥ 2 can be factored into a product

n = pv1
1 pv2

2 · · · p
vk
k ,

where the pi are distinct prime numbers and the vi are positive integers.
This factorization is unique up to the order of the factors; that is, apart
from the sequence in which the primes appear, there is only one way to
factor n into primes.

Theorem 6. If A and B are countably infinite sets, then A × B is also
countably infinite.

Corollary 2. We have |Z×Z| = |N|.

Theorem 7. The set Q of rational numbers is countable.

Theorem 8. The set A of all infinite binary sequences is uncountable.

1.7 Relations

Definition 4. A relation on a set X is a subset R ⊆ X × X. If (a, b) ∈
R, we write aRb and say that a is related to b.

Properties of relations. Let R be a relation on a set X. We say that
R is

1. reflexive if aRa for all a ∈ X.

2. symmetric if aRb implies bRa for all a, b ∈ X.

3. transitive if aRb and bRc implies aRc for all a, b, c ∈ X.

Definition 5 (Equivalence relations). If R is reflexive, symmetric, and
transitive, we say that R is an equivalence relation.

If R is an equivalence relation, often we shall write a ∼ b to mean
aRb. Sometimes we might even just say that ∼ is the equivalence
relation.
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Definition 6 (Equivalence class). Let R ⊆ X×X be an equivalence re-
lation on a set X. Define the equivalence class of an element a ∈ X to be
the set

[a] = {b ∈ X : a ∼ b}.

Proposition 9. Let R be an equivalence relation on A. Then

1. for all x ∈ A, x ∈ [x];

2. for all x, y ∈ A, x ∼ y if and only if [x] = [y];

3. for all x, y ∈ A, x ̸∼ y if and only if [x] ∩ [y] = ∅.

Definition 7 (Quotient set). Let A be a set and let ∼ to be an equiv-
alence relation on A. We define the quotient of A by ∼ as the set of all
equivalence classes of A under ∼:

A/ ∼= {[x] : x ∈ A}.

Proposition 10. Let A be a set and let ∼ to be an equivalence relation
on A. Then A/ ∼ is a partition of A.

2 Number Theory

2.1 Division

Proposition 11. For all a, b, c ∈ Z,

1. if a|b then a|bc;

2. if a|b and a|c then a|(b + c);

3. if a|b and b|c then a|c;

4. if a|b and b ̸= 0, then |a| ≤ |b|; and

5. if a|b and b|a, then |a| = |b|.

Theorem 9 (Division algorithm). Let a, b ∈ Z with b > 0. Then there
exist unique integers q, r ∈ Z such that

a = bq + r and 0 ≤ r < |b| .

Euclid’s algorithm. Given two nonnegative integers a and b, not
both zero, this algorithm outputs gcd(a, b).

E1. If b = 0, output a and stop.

E2. Since b ̸= 0, by the division algorithm we may write a = bq + r
with 0 ≤ r < b. Set a← b and b← r, and return to step E1.

Why does this algorithm work? The following lemma clarifies the
situation.
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Lemma 1. Let a, b, q, r ∈ Z be integers such that a = bq + r. Then
gcd(a, b) = gcd(b, r).

Theorem 10 (Bezout’s identity). Let a, b ∈ Z be nonzero integers with
greatest common divisor gcd(a, b). Then there exist integers s, t such
that

gcd(a, b) = sa + tb.

Moreover, gcd(a, b) is the smallest positive integer that can be written in
an integer linear combination of a and b.

The proof of Bezout’s identity is a good
example of a minimality proof.

Proposition 12. Let a and b be nonzero integers. The set

X =
{

s′a + t′b : s′, t′ ∈ Z
}

is exactly the set of multiples of d = gcd(a, b).

Proof. By Bezout’s identity, there exist integers s, t such that d =

sa + tb. First let n ∈ Z be a multiple of d, so n = kd for some k ∈ Z.
Then we have

n = kd = d(sa + tb) = (ds)a + (dt)b,

which means that n ∈ X, since ds, dt ∈ Z.
Conversely, suppose that n ∈ X. Then n = s′a + t′b for some

s′, t′ ∈ Z. Then since d divides a and b, we can write a = ld and
b = md for some integers l, m ∈ Z. So we have

n = s′a + t′b = s′ld + t′md = (s′l + t′m)d,

which shows that d|n, since s′l + t′m ∈ Z.
Coprime We say that integers a and b are relatively prime or co-

prime if gcd(a, b) = 1.

Proposition 13. For all integers n > 1, n and n+ 1 are relatively prime.

2.2 Primes

Theorem 11. An integer p with p ≥ 2 is prime if and only if the only if
for all a, b ∈N, p|ab implies that p|a or p|b.

This relates to the definition of a prime
number as a number p such that
gcd(p, n) = 1 for all integers n with
1 < n < p. Since p shares no common
divisors with any number less than
itself (other than 1), it cannot divide
a product ab unless it divides at least
one of a or b. This emphasizes the fun-
damental property of prime numbers
in relation to divisibility and greatest
common divisors.

To illustrate that this theorem, we can also consider p = 6, a = 2
and b = 15. We have p|ab since 6|30, but 6 does not divide 2 or 15.
By induction, the theorem can be extended to arbitrary finite prod-
ucts.

Corollary 3. Let p be prime and n be a positive integer. If a1, a2, . . . , an

are integers such that p|a1a2 · · · an, then p|ai for some 1 ≤ i ≤ n.
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Theorem 12 (Fundamental Theorem of Arithmetic, again). Every
integer n ≥ 2 can be expressedc as a product

n = p1 p2 · · · pk

where p1 ≤ p2 ≤ · · · ≤ pk are prime numbers. Furthermore, this factor-
ization is unique.

The Fundamental Theorem of Arithmetic can be used to prove the
following theorem.

Theorem 13. Let k and n be positive integers. Then either k
√

n is an
integer or it is irrational.

Theorem 14. There are infinitely many prime numbers.

Although the set of prime numbers is infinite, it does sort of get
"sparser" as one heads off towards infinity. This is quantified by the
following theorem.

Theorem 15 (Prime number theorem). For x ∈ R, let

π(x) = |{p ≤ x : p is prime}| .

Then π(x) ∼ x/ ln x in the sense that

lim
x→∞

π(x)
x/ ln x

= 1.

Corollary 4. Let n be a positive integer and let m be chosen uniformly at
random from the set {1, 2, . . . , n}. Then the probability that m is primes
satisfies

(ln n)P{m prime} → 1

as n → ∞. In other word, the probability that that m is prime is asymp-
totically 1/ ln n.

2.3 Modular Arithmetic

Definition 8 (Congruence). Fix n ≥ 1 and let a, b ∈ Z. We say that a
is congruent to b modulo n, if n|a− b. i.e., if a− b = kn for some k ∈ Z.
We write this as a ≡n b or a ≡ b (mod n).

For any fixed n, the set of all (a, b) ∈ Z with a ≡n b is a relation on
Z.

Proposition 14. For all fixed n, the relation a ≡n b is an equivalence re-
lation on the set Z.

Proposition 15. Fix an integer n ≥ 2. Let a, b ∈ Z. Then a ≡n b if and
only if

a % n = b % n.
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This proposition is useful in practice if we want to know whether
two numbers are congruent modulo n.

The proposition also implies that for all a ∈ Z and n ≥ 2, one has
[a]n = [a % n]. From the division algorithm, we know that a % n is
an element in the [0, n). It is equal to the integer r in that range such
that we may write a = qn + r for some q ∈ Z. We may choose to
denote the whole equivalence class by this element r. The set

Z/nZ = Z/ ≡n= {[0], [1], . . . , [n− 1]}

is called the ring of integers modulo n. or the cyclic group on n elements.

Computation in modular arithmetic

An element a ∈ Z with a ̸≡n 0 is said to be a zero divisor if there
exists b ∈ Z with b ̸≡n 0 such that ab ≡n 0.

Proposition 16. Let a ≡n c and b ≡n d. Then

1. a + b ≡n c + d;

2. ab ≡n cd;

3. ak ≡n ck for all k ∈N;

Definition 9 (Inverses modulo n). An element a ∈ Z is said to be in-
vertible modulo n if there exists b ∈ Z such that ab ≡n 1. The element b
is called the inverse of a. In fact, inverses are unique (in Z/nZ)

Proposition 17. Let a, n ∈ Z with n ≥ 2. Then if ab ≡n 1, and ac ≡n

1, then b ≡n c.

Theorem 16. Let a, n ∈ Z with n ≥ 2. Then:

1. a is invertible modulo n if and only if gcd(a, n) = 1;

2. if a is invertible modulo n, then there is a unique b ∈ Z such that
ab ≡n 1. Namely, if

1 = sa + tn,

then we can set b = s % n.

We can use this theorem to systematically find inverses of integers
modulo other integers.

Proposition 18. Let p be prime. Then

1. every x ∈ Z with x ̸≡p 0 is invertible modulo p;

2. for all a, b ∈ Z with ab ≡p 0 one has a ≡p 0 or b ≡p 0.
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Solving congruences modulo n

Proposition 19. Let p be prime. Then a2 ≡ a (mod p) if and only if a
is either congruent to 0 or 1 modulo p.

Proposition 20. Let p be prime and let a ̸≡ 0 (mod p) (so that a is in-
vertible modulo p). Then a ≡ a−1 (mod p) if and only if a is either con-
gruent to 1 or −1 modulo p.

Theorem 17 (Fermat’s little theorem). Let p be prime and let a be an
integer. If a ̸≡ −p0, then

ap−1 ≡ 1 (mod p).

Lemma 2. For all prime number p, the integer (p − 1)! is congruent to
−1 modulo p.

Theorem 18 (Wilson’s theorem). For all integers n ≥ 2, the integer n
is prime if and only if

(n− 1)! ≡ −1 (mod n).

3 Graph Theory

3.1 Definitions

A graph is a pair G = (V, E), where V is a nonempty set and

E ⊆ {u, v : u, v ∈ V, u ̸= v} .
The graph G is said to be finite if both
V are finite sets. A simple graph is a
graph that does not have more than one
edge between any two vertices and no
edge starts and ends at the same vertex.

Degrees and k-regularity The neighbors of a vertex v are all u ∈ V
such that uv ∈ E. The degree of a vertex v is the number of neighbors
of v, denoted by deg(v). A graph is said to be k − regular for some
k ∈N if every v ∈ V has degree k.

The following theorem relates vertex degree to the number of
edges.

Theorem 19. Let G = (V,E) be a finite graph. Then

∑
v∈V

deg(v) = 2 |E| .

Corollary 5 (Handshaking Lemma). In every finite simple graph, the
number of vertices having odd degree is even.

From Theorem above, we can derive a corollary that counts the
number of edges in k-regular graphs.

Corollary 6. Let G = (V,E) be k-regular. Then

|E| = k |V|
2

.
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Walks, paths, and cycles. A walk in a graph G = (V, E) is a se-
quence of vertices σ = (v0, v1, . . . , vk) such that vivi+1 ∈ E for all i
with 0 ≤ i < k. The endpoints of the walk are v0 and vk, and the lenght
of the walk σ is |σ| The walk is said to be closed if v0 = vk and open
otherwise.

A walk is a path if no vertices are repeated.

Theorem 20. Let G = (V,E) be a graph. If u and v are vertices such that
there exists a walk from u to v, then there exists a path from u to v.

There we proform a minimality ar-
gument. Note that this theorem is
about existence of path, a walk is not
necessary a path.

Proof. Let σ = (v0, v1, . . . , vn) be a walk from u to v of shortest
length. We claim that σ is a path. Indeed, suppose for a contradiction
that it is not a path; then there is some repeated vertex, so there exist
i, j ∈ 0, 1, . . . , n such that i < j and vi = vj. Hence there is no need to
visit any of the vertices between vi and vj in the walk, since vi = vj is
connected to vj+1. Concretely, consider the walk

σ′ = (v0, v1, . . . , vi, vj+1, . . . , vn).

Note that |σ′| = |σ| − (j − i), and j − i > 0, so σ′ is a shorter walk
from u to v. But this contradicts our choice of σ as a walk of shortest
length. We conclude that σ is a path.

A cycle is a walk of length at least 3 and no vertices repeated ex-
cept for v0 = vk.

Proposition 21. Let G = (V,E). If G contains a closed walk of odd
length, then G contains a cycle of odd length.

The idea is similar to the proof of the
previous theorem.Proof. Let σ = (v0, v1, . . . , vn) be an odd-length closed walk in G,

and choose this walk to have minimal odd length (i.e, any shorter
closed walk has even length). We shall prove that σ is a cycle.

For a contradiction, suppose that σ is not a cycle, so that there
exist indices i, j with 0 ≤ i < j ≤ n such that vi = vj. Consider the
two closed walks

σ1 = (v0, v1, . . . , vi, vj+1, . . . , vn)

and
σ2 = (vi, vj+1, . . . , vj).

Both are shorter than σ, so by the minimality of σ, they must have
even length. But this implies that |σ| = |σ1|+ |σ2| is even. This leads
to a contradiction.

We conclude that σ is a cycle.
Connectedness. We say a graph G = (V, E) is connected if for all

u, v ∈ V, there exists a walk from u to v. This is a disconnected graph:

Proposition 22. For all n ≥ 1, the graph Kn and Qn are connected.
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Proof. Any two vertices u and v in Kn are connected by an edge, so
we have a path (u, v) of length 1 between u and v. This shows that Kn

is connected.
Now let u and v be any two vertices in Qn. Suppose there are m

bits that differ between u and v, Then we can flip them one by one
to change u to v. This gives us a walk of length m between u and v,
since there is an edge in Qn between any two strings in Qn that differ
at exactly one bit.

Here is an example:

Example 2 (Disconnected Graph and Modular Arithmetic)

Let G = (V, E), where for i, j ∈ Z with i < j, we have ij ∈ E if and only
if j− i ∈ 9, 15. Then G is disconnected.

Proof. Starting at n ∈ Z, we can reach any vertex m that is of the form

m = n + 15s + 9t

for some s, t ∈ Z. By proposition in division section, the integers
representable as n + 15s + 9t are exactly the multiples of gcd(15, 9) =
3. So in fact, from n one can reach any integer m of the form n + 3k
for some k ∈ Z. That is, one can reach any integer m with m ≡ n
mod 3. Hence the three connected components of G are [0]3, [1]3, [2]3,
the equivalence classes of integers modulo 3.

3.2 Triangles and bipartite graphs

A subgraph of a graph G = (V, E) is a graph G′ = (V′, E′) such that
V′ ⊆ V and E′ ⊆ E where for all e = uv ∈ E′, we have u, v ∈ V′.

The extremal question An extremal question asks for the extermal
(maximum or minimum) number of objects we can have, subject to
some restrictions.

We now want to derive the maximum number of edges in a
triangle-free graph on n vertices.

Theorem 21 (Cauchy-Schwarz Inequality).
For all u1, . . . , un, v1, . . . , vn ∈ R, we have(

n

∑
i=1

uivi

)2

≤
(

n

∑
i=1

u2
i

)(
n

∑
i=1

v2
i

)
.

Theorem 22 (Mantel’s theorem). Let G = (V, E) be a graph not con-
taining a triangle as a subgraph. Then

|E| ≤ ⌊ |V|
2

4
⌋.
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Proof. Consider the sum

∑
uv∈E

(deg(u) + deg(v)) .

The term deg(u) appears in the sum exactly once for every edge
incident on u; that is, it appears deg(u) times. This is true for all
u ∈ V, so we conclude that

∑
uv∈E

(deg(u) + deg(v)) = ∑
u∈V

deg(u)2.

On the other hand, since G contains no triangle, for every pair of
vertices u and v, the set of neighbors of u is disjoint from the set of
neighbors of v. So deg(u) + deg(v) ≤ |V|, and we have

∑
u∈V

deg(u)2 = ∑
uv∈E

(deg(u) + deg(v)) ≤ |E| |V| .

By the Cauchy-Schwarz inequality, we have Derivation using Cauchy-Schwarz
inequality:

(2 |E|)2 =

(
∑

u∈V
(deg(u))

)2

(1)

=

(
∑

u∈V
deg(u) · 1

)2

(2)

≤
(

∑
u∈V

deg(u)2

)(
∑

u∈V
12

)
(3)

= |V|
(

∑
u∈V

deg(u)2

)
. (4)

(2 |E|)2 ≤ |V|
(

∑
u∈V

deg(u)2

)

Hence

4 |E|2 ≤ |V|
(

∑
u∈V

deg(u)2

)
≤ |V|2 |E| .

This implies that |E| ≤ |V|2
4 . We can take the floor function on the

R.H.S, since |E| must be an integer.
So if a graph has |E| > ⌊|V|2 /4⌋, there must be a triangle sub-

graph in G. This is the converse of the proposition
we just proved. Pay attention here,
because that means the theorem does
not assert any graph has edges less or
equal to ⌊|V|2 /4⌋ is triangle-free.

How about the case a graph has exactly |V|2 /4 edges? The Man-
tel’s theorem does not assert that it must have triangles. This brings
us to the definition of a bipartite graph.

Bipartite graphs A graph G = (V, E) is bipartite if there exists
a partition of V = A ∪ B of the vertex set (A ∩ B = ∅) called the
bipartition such that each edge has one endpoint in A and the other in
B. For example, hypercubes Qn are bipartite.

Proposition 23. For all n ≥ 1, the graph Qn is bipartite.

Proof. Let Qn = (V, E). Every elements s ∈ V corresponds to a binary
string of length n, S = (s1, s2, . . . , sn) where each si is either 0 or 1.
Define

V0 = {s ∈ V : s1 + · · ·+ sn ≡ 0 (mod 2)}

and
V1 = {s ∈ V : s1 + · · ·+ sn ≡ 1 (mod 2)} .
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It’s clear that V0 ∪ V1 = V and V0 ∩ V1 = ∅, so this is a bipartition of
the vertex set. For every e = s1s2 ∈ E, the strings s1 and s2 differ in
exactly on bit, so if s1 ∈ V0, then s2 ∈ V1 and vice versa. Hence Qn is
bipartite.

The complete bipartite graph Km,n is a bipartite graph with biparti-
tion V = Vm ∪ Vn, where |Vm| = m and |Vn| = n, and E is the set
uv : u ∈ Vm, v ∈ Vn of all possible edges between the two sets.

When n is even, the graph Kn/2,n/2 has n vertices and exactly n2/4
edges. When n is odd, the graph K(n−1)/2,(n+1)/2 has n vertices and

n + 1
2
· n− 1

2
=

n2 − 1
4

=
n2

4
− 1

4
= ⌊n2

4
⌋

edges. (The last equality here follows from the fact that any odd Kn/2,n/2 has the largest possible number
of edge shuch that the Mantel’s theo-
rem does not apply. But adding a single
edge to Kn/2,n/2 results in a graph that
must contain a triangle by Mantel’s
theorem.

n is congruent to either 1 or 3 modulo 4, which means its square is
congruent to 1 modulo 4.)

Lemma 3. A graph G = (V, E) is bipartite if and only if its connected
components are bipartite.

Proof. Let G1 = (V1, E1), . . . , Gk = (Vk, Ek) be the connected
components of G.

If each connected component is bipartite, then we can bipartition
each Vi into Ai ∪ Bi. Then A =

⋃n
i=1 Ai and B =

⋃n
i=1 Bi is a biparti-

tion of V. And every edge in G has one endpoint in A and the other
in B, so G is bipartite.

Now suppose that there is some connected component Gi that is
not bipartite. Now let V = A ∪ B be any partition of V into disjoint
nonempty sets. Then Ai = A ∩ V and Bi = B ∩ V form a partition
of Vi into disjoint nonempty sets. But since Gi is not bipartite, there
must be an edge uv ∈ Ei with both endpoints in Ai or both in Bi.
This means that A ∪ B is not a bipartition of V, and since A and B
were arbitrary, we conclude that G is not bipartite either.

As a matter of fact, we shall prove something much stronger than
just the fact that Kn/2,n/2 does not contain any triangles.

Theorem 23. A graph is bipartite if and only if it does not contain any
cycles of odd length.

Proof of this theorem requires the met-
ric of distance imposed on a graph G.
For all u, v ∈ V, the distance dist(u, v)
is the length of the shortest path from
u to v. If no such path exists, then
dist(u, v) = ∞.

Proof. First, assume that G = (V,E) is bipartite with bipartition V =

A ∪ B. Let σ be a cycle in G. Each edge changes sides between A and
B, so in order for starting and ending vertices of this cycle to be the
same, |σ| must be even.

Now suppose that G does not contain any cycles of odd length.
To show that G is bipartite, it suffices to show that each of its con-
nected components is bipartite by the lemma above. So without
loss of generality we may assume that G is connected. That means
dist(u, v) < ∞ for all u, v ∈ V.
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Select on vertex h ∈ V and set

V0 = {v ∈ V : dist(h, v) ≡ 0 (mod 2)}

and
V1 = {v ∈ V : dist(h, v) ≡ 1 (mod 2)}.

Let e = uv ∈ E. Consider a closed walk σ that follows a shortest path
from u to h then a shortest path from h to v, and finally the edge uv.
The length of σ is

|σ| = dist(u, h) + dist(h, v) + 1

But since G contains no cycles of odd length, |σ| must be even, by
(the Contrapositive of) Proposition 21, any closed walk in G must
have even length. This means that dist(u, h), dist(h, v) are not the
same modulo 2. That is, either u ∈ V0 and v ∈ V1 or vice versa.

3.3 Trees

A graph G is called a forest if it contains no cycles. A tree is a con-
nected forest. A vertex of degree 1 in a forest is called a leaf.

A tree with 25 leaves.

Proposition 24. Let F be a forest with at least one edge (and hence at
least two vertices). There are at least two leaves in F.

Proof. Let σ = (v0, v1, . . . , vk) be a path of maximum length in F.
SInce there is at least one edge in F, we have |σ| ≥ 1. The claim is that
deg(v0) = deg(vk) = 1. Suppose for a contradiction that deg(v0) ≥ 2.
So there exists u ∈ V such that uv0 is an edge. If u = vi for some
i, then there is a cycle vi, v0, . . . , vi contradicting the fact that F is a
forest. Hence for all 1 ≤ i ≤ k, we have u ̸= vi. But this a path of
length k + 1 exists. This contradicts the maximality of σ. The intuition is that, a tree should have

at least two ends, if not, either there is
a cycle or there is an extending part (a
new end) that can be added to the tree.

Proposition 25 (A characterization of trees). A graph G = (V,E) is a
tree if and only if for all u, v ∈ V, there exist a unique path from u to v.

Proof. First, suppose that G is a tree. Let u, v ∈ V, since G is a tree,
it is connected, so there must exist some path σ from u to v. Now we
prove that this path is unique. For a contradiction, let σ′ be another
path from u to v. Both σ and σ′ starts at u, but eventually they must
diverge. Let v1 be the last vertex where σ and σ′ have in common
(this should be u). Eventually they must meet again, since they both
end at v. Let v2 be the first vertex where they meet again. Now let σ′′

be the path obtained by following σ from v1 to v2, then following σ′

from v2 to v. This is a cycle, by choice of v1 and v2. But this give us a
contradiction, since G is a tree and contains no cycles.

Now suppose that for all u, v ∈ V, there exists a unique path
from u to v. The fact that there exists a path at all between every two
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vertices immediately implies that G is connected. It remains to prove
that there is no cycle in G. But this is clear, since if σ is a cycle in G,
then picking any two distinct vertices u, v on σ, we have two distinct
paths from u to v (clockwise and counterclockwise along σ).

We can prove another characterization of trees, but we need a
lemma first.

Lemma 4 (Detour Lemma). Let G = (V,E) be a connected graph and let
σ be a cycle in G, If G′ is the graph obtained by deleting on edge from σ,
then G′ is still connected.

Lemma 5. A graph G = (V,E) is a tree if and only if it is connected and
|E| = |V| − 1.

Proof. We prove the forward implication by induction on n = |V|.
Concretely, the statement we shall prove is, for all n ≥ 1, for all
G = (V, E) with |V| = n, if G is a tree, then |E| = n − 1 and G is
connected.

The base case in n = 1, where the only possible graph G is simply
a single vertex with no edges. This is a tree, since it is connected and
concains no cycles. We have |E| = 0 = 1− 1.

For the inductive step, let n ≥ 1 and suppose that the statement
holds n. Let G = (V, E) be a tree with |V| = n + 1. Since n ≥ 1, |V| ≥
2, there are at least two vertices, and the connectedness of G means
that there is at least one edge in G. Hence G is a firest with at least
one edge, and by Proposition 24, there are at least two leaves in G.
Pick one of these leaves and call it u. Form a new graph G′ = (V′, E′)
by removing the leaf u and the edge incident on it. We have |V′| = n
and |E′| = |E| − 1. The graph G′ is a tree, because for each pair of
vertices v, w ∈ V′, there is a unique path from v to w in G, and this
path does not pass through u (since u is a leaf). Hence

|E| =
∣∣E′∣∣+ 1 =

∣∣V′∣∣− 1 + 1 = |V| − 1,

where in the second equality we have to used the inductive hypothe-
sis.

Now assume that G is connected and |E| = |V| − 1. We want to
show that G has no cycles. For a contradiction, suppose that σ is a
cycle in G. Remove an edge from σ, by detour lemma, the resulting
graph is still connected. If this graph still has a cycle, remove an
edge from it again, and repeat this process until now cycles remain.
This graph G’ still has |V| vertices, but it has a new edge set E′ with
|E′| < |E|. But G’ is now a tree, since it contains no cycles but is still
connected. So by the previous paragraph, we have |E′| = |V| − 1 =

|E|. The contradiction completes the proof.
Now we are ablt the answer the following extremal question: How
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many edges can a graph on n vertices have if it does not contain a
cycle (i.e., is a forest)?

Corollary 7. Let F = (V,E) be a forest, then |E| ≤ |V| − 1.

Proof. Let k ≥ 1 denote the number of connected components of F,
and number the connected components as C1, . . . , Ck. Join C1 to C2

by an edge, then join C2 to C3 by an edge, and so on. This creates a
connected graph G = (V,E’) with |E′| = |E| + k − 1, and G must be
a tree, since adding these edges does not introduce a cycle. By the
previous theorem, |E′| = |V| − 1, so |E| ≤ |E′| = |V| − 1.

3.4 Eulerian trails and circuits

Recall that a wak that des not repeat any vertex is called a path. Now
we introduce the concept of trail: this is a walk that does not repeat
any edge. A walk is called an Eulerian trail if it uses every edge of G
exactly once, and an Eulerian circuit if it is an Eulerian trail and it is
closed.

The graph representing the seven
bridges of Konigsberg

Theorem 24. Let G = (V,E) be a connected graph with a finite number of
vertices and edges, where multiple edges between the same pair of vertices
are allowed. Then G has an Eulerian circuit if and only if every vertex in
G has even degree.

Proof. Suppose G has an Eulerian circuit σ = (v0, v1, . . . , vk) where
v0 = vn For each vi ̸= v0, each visit uses two edges, one edge to enter
vi and one edge to leave vi. So deg(vi) is even for all 0 ≤ i < n. For
v0 = n, there is one edge that leaves it at the beginning, two edges for
each visit during the circuit, and then one returning to it at the end.
So deg(v0) is even as well.

We prove the reverse implication by induction on m = |E|. That is,
we prove that for all integers m ≥ 0, if G = (V,E) with |E| = m and all
vertices in G have even degree, then G has an Eulerian circuit.

For the base case m = 0, the graph G is a single vertex with no
edges, and it has an Eulerian circuit.

Now let m ≥ 1 and suppose the statement holds for all integers
less than or equal to m. Let G = (V,E) with |E| = m + 1. Since there
is at least one edge in G, G cannot be a tree. This is because every
tree with at least one edge contains at least two leaves, and leaves
have (odd) degree 1. Let σ be a cycle in G and form a new graph G’
= (V,E’) by deleting every edge in σ. This graph may no longer be
connected, but since we remove a cycle, every vertex in G’ either has
the same degree as in G, or degree two less than in G. So all vertices
in G’ have even degree as well. Let k be the number of connected
components of G’; number them as H1, . . . , Hk. Each has at most m Process of building an Eulerian circuit

in G:

• Start at any vertex σ

• Follow σ

• Each time we reach a vertex of a
connected component Hi of G’ for
the first time, follow its Eulerian
circuit. (We know that each connected
component has an Eulerian circuit by
the inductive hypothesis.)

• Once we return to the beginning of
the Eulerian circuit, continue along
σ.

• Repeat this process until we return
to the vertex of σ we started at.
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edges, so by the inductive hypothesis, each has an Eulerian circuit.
We build an Eulerian circuit in G using the process to the right.

Eventually, this gives us an Eulerian circuit in G.

Theorem 25. Let G = (V,E) be a connected graph (with multiple edges
allowed). Then G contains an Eulerian trail that isn’t an Eulerian circuit
if and only if exactly two vertices of G have odd degree.

Proof. Suppose that G contains an Eulerian trail σ = (v0, v1, . . . , vk)

in which v0 ̸= vk. By a similar reasoning to the first paragraph of the
previous proof, every vertex in the walk has even degree, except both
v0 and vk must have odd degree, since starting at v0 we must leave
for the first time via an edge, and at the end we enter vk one last time
without exiting.

Now assume that G contains exactly two odd-degree vertices. By
the previous theorem, there does not exist an Eulerian circuit in G.
Let u and v be the two odd-degree vertices. Add a new edge uv, even
if there was already an edge between u and v before. We get G’ in
which every vertex has even degree. So G’ must have an Eulerian
circuit σ′. It contains the edge uv, but we can remove it to get an
Eulerian trail in G.

3.5 Planar graphs

A graph G is called planar if it can be drawn in the plane without any
edges crossing. If we can, such a drawing is called a planar embedding
of G.

Planar embeddings of K4 and Q3

Planarity is a property that passes down to subgraphs.

Proposition 26. If G is planar then any subgraph H of G is also planar.

Proof. If G is drawn in the plane without edges crossing, and we
erase some edges and vertices to create a drawing of H, we cannot
introduce any edge crossings along the way.

A planar embedding of a graph determins regions, or faces bounded
by edges, including on region outside the graph. We define the Euler
characteristic of a planar embedding of G to be the quantity

χ = |V| − |E|+ f ,

where f is the number of faces in the embedding.
From the figure above, we notice that both K4 and Q3 have χ = 2,

this is not just a coincidence.

Theorem 26 (Euler’s formula). Let G = (V,E) be a connected planar
graph, let f be the number of faces in a planar embedding of G. Then
|V| − |E|+ f = 2.
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To prove this, we need the following theorem.

Theorem 27 (Jordan curve theorem). Every closed curve in the plane
R2 that does not intersect itself divides the plane into two regions.

Proof of Theorem 26. We proceed by induction on m = |E|. In the
case that m = 0, G can only be a single vertex, in which we have
χ = 1− 0 + 1 = 2.

Now let m ≥ 0 and assume that the theorem holds for all natural
numbers at most m. Let G = (V,E) be a connected planar graph with
|E| = m + 1. Draw G in the plane and let f be the number of faces in
the embedding. There are two cases, according to whether G is a tree
or not. If G is a tree, then f = 1 since G has no cycles. But we also
have |E| = |V| − 1, so

χ = |V| − |E|+ f = |V| − |V|+ 1 + 1 = 2.

If G is not a tree, then G has a cycle, call it σ. Form G’ by removing
exactly one edge e from σ, so∣∣E′∣∣ = |E| − 1 = m + 1− 1 = m.

By the detour lemma, G’ is still connected, and it is planar, since
removing an edge doesn’t introduce any crossings. By the inductive
hypothesis, the Euler characteristic χ′ of G’ satisfies

χ′ = |V| −
∣∣E′∣∣+ f ′ = 2,

where f ′ is the number of faces in a planar embedding of G’. Return-
ing to the drawing of G, the cycle σ is closed curve without intersec-
tions in the plane, so it divides the plane into two regions (each of
which may have multiple faces within them). In particular, the re-
moved edge e forms a border between two distinct daces, and in G’,
these two faces combine into one face. Hence f = f ′ + 1. Putting
everything together, we calculate the Euler characteristic of G satisfies

χ = |V| − |E|+ f = |V| − (
∣∣E′∣∣+ 1) + ( f ′ + 1) + 1 = 2.

Euler’s formula tells us that the number of faces in any drawing of
G depends entirely on the number of vertices and edges in G. We can
use this information to give conditions for a graph to be non-planar.

Theorem 28. Let G = (V,E) be a connected planar graph with |V| ≥ 5.
The

|E| ≤ 3 |V| − 6.

Under the further assumption that G contains no triangles, we have a
better bound

|E| ≤ 2 |V| − 4.
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Proof. The proof is by double counting. Let R be the set of all re-
gions into which G divides the plane, so that |R| = f , the number of
faces. Consider the set

S = {(e, r) ⊂ E× R : the edge e touches the region r}.

We will count |S| in two ways. First off, each edge e ∈ E touches at
most two regions, so |S| ≤ 2 |E|. On the other hand, every region
is bounded by a cycle, and a cycle has at least three edges, so each
region r ∈ R touches at least 3 edges. In other words, |S| ≥ 3 f .
Chaining these into two inequalities, we have

3 f ≤ |S| ≤ 2 |E| .

But by Euler’s formula, we have |V| − |E|+ f = 2, so f = 2 + |E| −
|V|, and substituting this above, we get

3(2 + |E| − |V|) ≤ 2 |E| .

Distributing and rearranging terms yields the desired inequality
|E| ≤ 3 |V| − 6.

If we have the further assumption that there are no triangles in G,
then every region must touch at least 4 edges, allowing us to con-
clude the stronger inequality 4 f ≤ 2 |E|. Then we proceed as above to
get

4(2− |V|+ |E|) ≤ 2 |E| ,

which can be manipulated to get |E| ≤ 2 |V| − 4.
The condition that |V| ≥ 5 is a complete non-issue, since a graph

with fewer than 5 vertices is a subgraph of K4, and we can apply
Proposition 26, since we already know that K4 is planar. As a corol-
lary of the (contrapositive of the) previous theorem, we can give two
important examples of nonplanar graphs.

Corollary 8. The complete graph K5 and the complete bipartite graph
K3,3 are nonplanar.

Proof. If (V, E) = K5 we have |V| = 5 so 3 |V| − 6 = 9, but |E| = 10.
So by the contrapositive of the previous theorem, K5 is nonplanar.

The graph K3,3 does not contain any triangles, so if it were planar,
then the stronger bound |E| ≤ 2 |V| − 4 must hold. But in (V, E) =

K3,3, we have |V| = 6 and 2 |V| − 4 = 8, but |E| = 9. So K3,3 is
nonplanar.

This corollary, combined with the contrapositive of Proposition 26,
shows that Kn is nonplanar for all n ≥ 5, and that Km,n is nonplanar
for all m, n ≥ 3. More generally, any graph that contains K5 or K3,3 as
a subgraph is nonplanar.

The graph K5 with an extra vertex
subdividing an edge.
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However, subgraphs are not exactly the right notion to be consid-
ering when talking about planarity. To see why, consider the graph to
the right.

It is nonplanar, since if it had a planar embedding, then by con-
tracting on of the edges incident on the vertex, and bending other
edges accordingly, we would obtain a planar embedding of K5. On
the other hand, this graph does not contain K5 as a subgraph. We
thus introduce the following notion.

We say that a graph H is a graph minor of a graph G if H can be
obtained from G repeatedly by either one of the following operations
to the right. • deleting an edge;

• deleting a vertex; or

• contracting an edge uv by removing
it and merging u and v into a single
vertex (and also combining any
resulting multiple edges into a
single edge).

Any number of the first two operations simply creates a subgraph.
It is the contraction operation that produces interesting examples of
graph minors. It is easy to see pictorially that contracting edges pre-
serves planarity, so any graph minor of a planar graph is planar. We
can use this to show, for instance, that the Petersen graph, depicted
to the right, is nonplanar. Since by contracting each of the five edges
connecting the inner star pentagram to the other pentagon, we obtain
a K5. (Note that Theorem 28 does not apply to the Petersen graph.)

Not only all graphs that have K5 and K3,3 as minors are nonplanar,
it turns out that there are the only nonplanar graphs.

Theorem 29 (Wagner’s theorem). A graph G is nonplanar if and only
if either K5 or K3,3 is a minor of G.

It deals with the notion of a subdivision of a graph G, subdividing
an edge into two edges each time. (We have shown an example of a
subdivision of K5 )

Theorem 30 (Kuratowski’s theorem). A graph G is nonplanar if and
only if it contains a subdivision of either K5 or K3,3 as a subgraph.

It is easy to see that if H is a subdivision of G, then G is a minor of
H, since we can reobtain G by contracting all the edges created by the
subdivision operations. So the two theorems above are certainly very
closely related, though it is not immediately obvious if one should
imply the other. The truth is that they are equivalent, because it can
be shown that any graph with either K5 or K3,3 as a minor also has a
subgraph that is a subdivision of one of them.
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4 Combinatorics

4.1 Counting

Theorem 31 (Principle of inclusion and exclusion). Let n ≥ 2 be an
integer and let A1, . . . , An be finite sets. Then∣∣∣∣∣ n⋃

i
Ai

∣∣∣∣∣ = n

∑
k=1

(−1)k+1

 ∑
1≤i1<...<ik≤n

∣∣∣∣∣∣
k⋂

j=1

Aij

∣∣∣∣∣∣
 .

Theorem 32 (Binomial theorem). For all x, y ∈ R and positive inte-
gers n,

(x + y)n =
n

∑
k=0

(
n
k

)
xn−kyk.

Proof. Expanding the left-hand side, we get

(x + y)n = (x + y)(x + y) · · · (x + y)︸ ︷︷ ︸
n times

.

We see that there will be 2n different terms after repeatedly using the
distributive property. Each term will be a product of x to some power
and y to some power, where the powers add up to n. In other words,
each term will be of the form xn−kyk for some k between 0 and n. The
number of times that the term xn−kyk appears is the number of ways
to choose k of the n factors to be y, which is (n

k). This gives exactly
the right-hand side of the equation.

Proof of Theorem 31. Let n ≥ 2 and let A1, A2, . . . , An be finite sets.
Recall that the identity we want to prove is∣∣∣∣∣ n⋃

i=1

Ai

∣∣∣∣∣ = n

∑
k=1

(−1)k+1

 ∑
1≤i1<...<ik≤n

∣∣∣∣∣∣
k⋂

j=1

Aij

∣∣∣∣∣∣
 .

Let x be an element that belongs to the union
⋃n

i=1 Ai. Clearly, this
contributes 1 to the left-hand side, so we must show that it con-
tributes exactly 1 to the right-hand side as well. We know that x is
a member of at least one of Ai; let s ≥ 1 be the number of the sets Ai

that contain x.
Each time x is a member of some Ai, it contributes +1 to the right-

hand side. This happens (s
1) times. Each time it is a member of Ai

and Aj for some i < j, x contributes -1 to the right-hand side; this
happens (s

2) times. generally, if x is a member of A1 ∩ A2 ∩ . . . ∩ Ar, it
contributes +1 if r is odd and -1 if r is even, and this term is repeated
(s

r). So the total contribution of x to the right-hand side is(
s
1

)
−
(

s
2

)
+

(
s
3

)
− . . . + (−1)s+1

(
s
s

)
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By the binomial theorem,

0 = (1− 1)s =

(
s
0

)
−
(

s
1

)
+

(
s
2

)
− . . . + (−1)s

(
s
s

)
.

We know that (s
0) = 1, so by rearranging the terms, we get(

s
1

)
−
(

s
2

)
+

(
s
3

)
− . . . + (−1)s+1

(
s
s

)
=

(
s
0

)
= 1.

This means that the contribution of x to the right-hand side is 1, as
desired. The proof is finished since x is arbitrary.

Example 3

Let X = {1, 2, . . . , 100} and we want to count the number of n ∈ X

with gcd(n, 30) = 1.

To accomplish this, it turns out to be easier to count the number of
n ∈ X with gcd(n, 30) ≥ 2 (and then we must subtract this number
from |X| = 100). For any positive integer r let

Ar = {n ∈ X : r|n}.

Since 30 = 2 · 3 · 5, an integer n has gcd(n, 30) ≥ 2 if and only
if n ∈ A2, n ∈ A3, or n ∈ A5. By the principle of inclusion and
exclusion,

|A2 ∪ A3 ∪ A5| = |A2|+ |A3|+ |A5|− |A2 ∩ A3|− |A2 ∩ A5|− |A3 ∩ A5|+ |A2 ∩ A3 ∩ A5| .

The number of even integers in X is |A2| = 50, similarly the
number of multiples of 3 is |A3| = ⌊100/3⌋ = 33. In general, |Ar| =
⌊100/4⌋. Furthermore, since gcd(2, 3) = 1, the intersection A2 ∩ A3 is
simply A6, and by analogous reasoning, we see that

|A2 ∪ A3 ∪ A5| = |A2|+ |A3|+ |A5| − |A6| − |A10| − |A15|+ |A30|

= ⌊100
2
⌋+ ⌊100

3
⌋+ ⌊100

5
⌋ − ⌊100

6
⌋ − ⌊100

10
⌋ − ⌊100

15
⌋+ ⌊100

30
⌋

= 50 + 33 + 20− 16− 10− 6 + 3

= 74.

We conclude that the number of n ∈ X with gcd(n, 30) = 1 is 100−
74 = 26.

4.2 Permutations and combinations

Proposition 27. Let n ≥ 0 be an integer. Then

n

∑
k=0

(
n
k

)2
=

(
2n
n

)
.
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Proof. Let X be set of size 2n. The right-hand side counts the num-
ber of subsets of X of size n. We count this in a different way. Let A
and B be such the |A| = |B| = n, and A ∪ B = X (so we must have
A ∩ B = ∅). Then choosing a subset of X is the same as choosing k
elements of A, where 0 ≤ k ≤ n, and then choosing the remaining
n− k elements from B. In other words,(

2n
n

)
=

n

∑
k=0

(
n
k

)(
n

n− k

)
=

n

∑
k=0

(
n
k

)2
.

Now let’s explore more identities involving binomial coefficients.

Laying out the binomial coefficients in
the triangle.

Pascal’s triangle

This triangle can easily be drawn by hand by writing 1s along
its boundary and filling in the interior by adding the two numbers
above each cell. Now we shall prove this observation.

Proposition 28 (Pascal’s identity). Let n ≥ 0 and k ≥ 1 be integers.
Then (

n
k

)
=

(
n− 1

k

)
+

(
n− 1
k− 1

)
.

The only number that appears infinitely
many times is 1, since any n ∈ Z can
only appear in the first n + 1 rows of
the triangle.
A fun conjecture to think about is the
Singmaster’s conjecture, but whether
the statement is true is still a open
problem.

Proof. Set X = {1, 2, . . . , n}. We count the number of sets Y ⊆ X
there are of size k. Either 1 ∈ Y or 1 /∈ Y. If 1 /∈ Y, then there are
(n−1

k ) possibilities for what Y can be. If 1 ∈ Y, then there are still
k − 1 elements to choose from n − 1 elements, so there are (n−1

k−1)

possibilities for what Y can be. Hence the right-hand side counts the
number of sets Y ⊆ X of size k. But this is exactly what the left-hand
side counts as well.

Another proof of Proposition 8 We re-establish the notation of the
proposition statement. Let X be a finite nonempty set, let E be the set
of subsets of X with even cardinality, and let O bet the set of subsets
with odd cardinality. By the binomial theorem with x = −1, y = 1,
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we have

0 = (−1 + 1)n =
n

∑
k=0

(
n
k

)
(−1)k1n−k

=

(
n
0

)
−
(

n
1

)
+

(
n
2

)
− . . . + (−1)n

(
n
n

)

Hence(
n
0

)
+

(
n
2

)
+ . . . +

(
n
n

)
=

(
n
1

)
+

(
n
3

)
+ . . . +

(
n

n− 1

)
.

but the left-hand side is just |E| and the right-hand side is |O|.

Proposition 29. For all n ∈N,

n

∑
k=0

(
n
k

)
= 2n.

Proof. By the binomial theorem with x = y = 1, we have

2n = (1 + 1)n =
n

∑
k=0

(
n
k

)
1k1n−k =

n

∑
k=0

(
n
k

)
.

The proposition can also be proven by noting that the left-hand side
counts the number of subsets of {1, 2, . . . , n} of size 0, plus the sub-
sets of size 1, and so on up to all subsets of size n. But adding up all
these numbers gives the number of all subsets of {1, 2, . . . , n}, which
is 2n.

Theorem 33 (Freshman’s dream). Let p be a prime number and let
x, y ∈ Z. Then

(x + y)p = xp + yp (mod p).

Proof. By the binomial theorem, we have

(x + y)p =
p

∑
k=0

(
p
k

)
xkyp−k = xp + yp +

p−1

∑
k=1

(
p
k

)
xkyp−k.

Taking this equation modulo p, we are done if we can show that for
all 1 ≤ k ≤ p− 1, (

p
k

)
≡ 0 (mod p).

Let 1 ≤ k ≤ p− 1 and expand the binomial coefficient:(
p
k

)
=

p!
k!(p− k)!

.

Multiplying both side by k!(p− k)!, we get

k!(p− k)!
(

p
k

)
= p! = p(p− 1)!.
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This is an integer and the right-hand side is a multiple of p, so the
left-hand side is as well. Then since p devides the product k!(p− k)!,
either p divides k!(p − k)! or it divides (p

k). But the former is not
possible, since

k!(p− k)! = k(k− 1) · · · 2 · 1 · (p− k)(p− k− 1) · · · 2 · 1,

and all of the factors on the right-hand side are positive integers
less than p. Hence p can not divide any of them, and not divide
k!(p− k)!, so it must divide (p

k).

4.3 Recurrence

Proposition 30. Suppose that (an) is a sequence with a0 = c for some
constant c ∈ R and, for all n ≥ 0, an = b · an−1 for some b ∈ R. Then
for all n ≥ 0, we have

an = c · bn.

In general, we will consider recurrences of the form

an = f1(n)an−1 + f2(n)an−2 + . . . + fk(n)an−k + g(n),

where f1, . . . , fk, g : N→ R are functions, and k ≥ 1 is an integer.
These recurrences are said to be linear of degree k. If g(n) = 0, the

recurrence is said to be homogeneous; otherwise, it is non-homogeneous.
For non-homogeneous recurrences, the same recurrence without

the g(n) term is called the associated homogeneous recurrence. If, for all
1 ≤ i ≤ k, the function fi is a constant function, then the recurrence is
said to have constant coefficients.

A sequence (pn) that satisfies the recurrence is called a particular
solution. A general solution is a formula describing all possible solu-
tion using some parameters. If we specify values for the first few
terms, these are call initial conditions for the recurrence.

Theorem 34. Consider the non-homogeneous recurrence

an = f (n)an−1 + g(n),

where f , g : N → R. If (pn) is any particular solution to the recurrence
and (hn) is a general solution to the associated homogenous recurrence,
i.e.,

hn = f (n)hn−1,

for all n ≥ 1, then the general solution for recurrence is

an = hn + pn.
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Theorem 35. Consider the recurrence

an = f1(n)an−1 + f2(n)an−2 + · · ·+ fk(n)an−k + g(n),

for some k ≥ 1 and f1, . . . , fk, g : N → R. If (pn) is any particular
solution to the recurrence and (hn) is a general solution to the associated
homogeneous recurrence, i.e.,

hn = f1(n)hn−1 + f2(n)hn−2 + · · ·+ fk(n)hn−k,

for all n ≥ 1, then the general solution for the recurrence is given by
an = hn + pn.

Theorem 36. Consider the recurrence given by

an = c1an−1.

If the characteristic polynomial of this recurrence has two distinct roots r1

and r2, then the general solution of the recurrence is

an = α1rn
1 + α2rn

2 .

Supposing we know the initial conditions a0 and a1, we have the identi-
ties

α1 =
a1 − r2a0

r1 − r2
and α2 =

r1a0 − a1

r1 − r2
.

Theorem 37. Let k ≥ 2 be an integer and consider the recurrence given
by

an = c1an−1 + c2an−2 + · · ·+ ckan−k.

If the characteristic polynomial of this recurrence has k pairwise distinct
roots r1, . . . , rk, then the general solution of the recurrence is

an = α1rn
1 + α2rn

2 + · · ·+ αkrn
k .

Theorem 38. Consider the homogeneous recurrence

an = c1an−1 + c2an−2.

If the characteristic polynomial of this recurrence has a repeated root r,
then the general solution of the recurrence is

an = α1rn + α2nrn.

Suppose we know the initial conditions a0 and a1, then we have the
identities

α1 = a0 and α2 =
a1 − a0r

r
.
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